题目:https://www.acwing.com/problem/content/173/
达达帮翰翰给女生送礼物,翰翰一共准备了N个礼物,其中第i个礼物的重量是G[i]。
达达的力气很大,他一次可以搬动重量之和不超过W的任意多个物品。
达达希望一次搬掉尽量重的一些物品,请你告诉达达在他的力气范围内一次性能搬动的最大重量是多少。
输入格式
第一行两个整数,分别代表W和N。
以后N行,每行一个正整数表示G[i]。
输出格式
仅一个整数,表示达达在他的力气范围内一次性能搬动的最大重量。
数据范围
1≤N≤46,
1≤W,G[i]≤2^31−1
输入样例:
20 5
7
5
4
18
1
输出样例:
19
题解:这道题第一眼看起来像是一个经典的01背包问题,但是由于W的范围过大,肯定是过不了的,我们可以考虑搜索,但是普通的dfs时间复杂度会达到O(2^N),我们也不能接受,因此考虑双向dfs,先将物品重量排序(优化搜索顺序),然后左边一部分的任意组合的重量和记录下来,然后在剩余部分搜索任意组合,每次二分查找出左边部分小于等于m-s的最大重量,然后加上s就是这种组合的答案,我们只要记录个最大值就是最优解了。
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast","inline")
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,b,a) for(int i=b;i>=a;i--)
#define Mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define x first
#define y second
const int N = 50;
ll w[N],n,m,k;
vector<ll> res;
ll ans = -1;
void dfs1(int u,ll s) {
if(u == k) {
res.push_back(s);
return;
}
dfs1(u+1,s);
if(s + w[u] <= m) dfs1(u+1,s+w[u]);
}
void dfs2(int u,ll s) {
if(u == n) {
ll l = 0,r = res.size() - 1;
while(l < r) {
ll mid = l + r + 1 >> 1;
if(res[mid] <= m - s) l = mid;
else r = mid - 1;
}
ans = max(ans,s + res[l]);
return;
}
dfs2(u+1,s);
if(s + w[u] <= m) dfs2(u+1,s+w[u]);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> m >> n;
rep(i,0,n-1) cin >> w[i];
sort(w,w+n,greater<int>());
k = n/2+2;
dfs1(0,0);
sort(res.begin(),res.end());
res.erase(unique(res.begin(),res.end()),res.end());
dfs2(k,0);
cout << ans;
return 0;
}