关于 torch.nn.Linear 的输入维度问题

本文解析了nn.Linear在不同维度输入时的行为,如[1,3,9]转为[1,3,18]的实例,强调了输出形状保持除最后一维外一致的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        根据官方给出解释,在这里输入和输出的维度可以是任意,即不论你是二维,还是三维,甚至是 n 维度都是可以的。这里,通过 nn.Linear 后的输出形状除了最后一个维度,其他的均与输出一样,且这个输出值不会有任何变化。比如 [1, 3, 9] 形状的张量,通过 nn.Linear(9, 18) 的线性层,其输出的形状是 [1, 3, 18]。又或 [1, 3, 3, 9] 形状的张量,通过 nn.Linear(9, 18) 的线性层,其输出的形状是 [1, 3, 3, 18]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值