plt自定义水平线和垂直线、水平区域和垂直区域

一、添加x轴y轴垂直辅助线

1、函数 

  • axvline函数:绘制垂直线。
  • axhline函数:绘制水平线。

2、参数

plt.axvline(x=0, ymin=0, ymax=1, c="g", ls="--", lw=2, label=None)。axhline类似

  • x:垂直线在x轴上的位置。浮点数,默认值为0。
  • ymin:垂直线在y轴方向上的起始值。浮点数,默认值为0。取值范围为[0,1],0表示子图底部,1表示子图顶部。值可以超出[0,1],但是超出部分不会正常显示。
  • ymax:垂直线在y轴方向上的终止值。浮点数,默认值为1。取值范围为[0,1],0表示子图底部,1表示子图顶部。
  • c:参考线条颜色
  • ls:参考线条风格
  • lw:参考线条宽度 
  • label:该线的标签(最后用于图例使用)
  • marker='*', # 线两端marker
  • markerfacecolor='w'
  • markersize=10, # marker大小
import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 2, 0.01)
y = np.sin(x)

fig, ax = plt.subplots(constrained_layout=True)
ax.plot(x, y)

xticks_label = [0,0.5,1.0,1.5,2.0]
xticks1_label = [1.25]

ax.axvline(x=0.5,ymin=0,ymax=1,label="2023_data")

plt.legend()
plt.show()

二、添加x y轴垂直区域 

1、函数

  • matplotlib.pyplot.axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
  • matplotlib.pyplot.axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

2、示例

import matplotlib.pyplot as plt

plt.figure(dpi=100)
plt.plot([1,2,6],lw=1)
plt.axvspan(1.0, 1.2, facecolor='g', alpha=0.3, **dict()) # 垂直x轴区域
plt.axhspan(4.0, 5.2, facecolor='pink', alpha=0.3, **dict()) # 垂直y轴区域

plt.show()

### 使用 Python Matplotlib 进行平滑曲线拟合 为了在 Python 中使用 `matplotlib` 对数据点进行平滑曲线拟合,可以考虑以下几种方法: #### 方法一:基于多项式插值 可以通过 NumPy 的 `polyfit` 函数来拟合一条高次多项式曲线。这种方法适用于简单的平滑需求。 ```python import numpy as np import matplotlib.pyplot as plt # 原始数据点 x = np.array([0, 1, 2, 3, 4]) y = np.array([0, 0.8, 0.9, 0.1, -0.8]) # 多项式拟合 (degree=3 表示三次多项式) z = np.polyfit(x, y, deg=3) p = np.poly1d(z) # 绘制原始数据点平滑曲线 xp = np.linspace(min(x), max(x), 100) plt.plot(x, y, 'o', label="Data Points") # 数据点 plt.plot(xp, p(xp), '-', label="Polynomial Fit") # 平滑曲线 plt.legend() plt.show() ``` 此方法利用了多项式的灵活性[^1],能够较好地逼近复杂的数据分布。 --- #### 方法二:贝塞尔曲线拟合 如果希望获得更自然的过渡效果,可以尝试使用贝塞尔曲线来进行平滑处理。以下是基于二阶贝塞尔曲线的一个例子[^2]: ```python from scipy.special import comb import numpy as np import matplotlib.pyplot as plt def bernstein_poly(i, n, t): """计算第 i 个 Bernstein 基函数""" return comb(n, i) * (t ** i) * ((1 - t) ** (n - i)) def bezier_curve(control_points, num_points=100): """生成 Bezier 曲线""" n = len(control_points) - 1 t_values = np.linspace(0, 1, num=num_points) curve_x = [] curve_y = [] for t in t_values: point_x = sum([bernstein_poly(i, n, t) * control_points[i][0] for i in range(n + 1)]) point_y = sum([bernstein_poly(i, n, t) * control_points[i][1] for i in range(n + 1)]) curve_x.append(point_x) curve_y.append(point_y) return np.array(curve_x), np.array(curve_y) control_points = [[0, 0], [1, 1], [2, -1]] # 控制点 curve_x, curve_y = bezier_curve(control_points) # 绘制结果 plt.plot(*zip(*control_points), '--o', label="Control Points", color="gray") plt.plot(curve_x, curve_y, label="Bezier Curve", color="blue") plt.legend() plt.show() ``` 上述代码实现了二阶贝塞尔曲线的绘制功能,并允许自定义控制点的位置以调整曲线形态。 --- #### 方法三:B 样条曲线拟合 对于更加复杂的场景,推荐使用 B 样条曲线(B-Spline)。它具有局部支持特性,适合大规模数据点的平滑操作[^4]。 ```python from scipy.interpolate import splev, splrep import numpy as np import matplotlib.pyplot as plt # 输入数据点 x = np.array([0, 1, 2, 3, 4]) y = np.array([0, 0.8, 0.9, 0.1, -0.8]) # 计算 B 样条参数 tck = splrep(x, y, s=0) # 参数 s 控制光滑程度 xi = np.linspace(min(x), max(x), 100) yi = splev(xi, tck) # 绘制图像 plt.plot(x, y, 'o', label="Original Data Points") plt.plot(xi, yi, '-', label="B-Spline Interpolation") plt.legend() plt.show() ``` 该方法通过 SciPy 提供的功能自动完成样条曲线的构建,并可通过调节参数 `s` 来平衡拟合精度与平滑度。 --- #### 方法四:手动实现平滑逻辑 还可以借助一些辅助工具包或者自定义算法进一步优化平滑过程。例如 CSDN 上提到的一种基于贝塞尔曲线的手动平滑方案[^3]: ```python def smoothing_base_bezier(x, y, k=0.3, closed=False): """ 手动实现平滑曲线 :param x: 水平坐标数组 :param y: 垂直坐标数组 :param k: 控制点权重因子,默认为 0.3 :param closed: 是否闭合曲线 :return: 新的平滑后的 x y 数组 """ points = list(zip(x, y)) smoothed_x, smoothed_y = [], [] if not closed: for i in range(len(points)-1): start_point = points[i] end_point = points[i+1] mid_point = ( (start_point[0]+end_point[0])/2, (start_point[1]+end_point[1])/2 ) cp_start = ( start_point[0] + k*(mid_point[0]-start_point[0]), start_point[1] + k*(mid_point[1]-start_point[1]) ) cp_end = ( end_point[0] - k*(mid_point[0]-end_point[0]), end_point[1] - k*(mid_point[1]-end_point[1]) ) t_vals = np.linspace(0, 1, 50) segment_x = [ (1-t)**2*start_point[0] + 2*t*(1-t)*cp_start[0] + t**2*end_point[0] for t in t_vals ] segment_y = [ (1-t)**2*start_point[1] + 2*t*(1-t)*cp_start[1] + t**2*end_point[1] for t in t_vals ] smoothed_x.extend(segment_x[:-1]) smoothed_y.extend(segment_y[:-1]) smoothed_x.append(end_point[0]) smoothed_y.append(end_point[1]) else: pass # 需要额外处理闭环情况 return np.array(smoothed_x), np.array(smoothed_y) # 测试用例 x_test = np.array([0, 1, 2, 3, 4]) y_test = np.array([0, 0.8, 0.9, 0.1, -0.8]) smoothed_x, smoothed_y = smoothing_base_bezier(x_test, y_test) plt.plot(x_test, y_test, 'o-', label="Raw Data") plt.plot(smoothed_x, smoothed_y, '-', label="Smoothed Curve") plt.legend() plt.show() ``` 这种做法提供了更高的定制化能力,同时也保留了一定的通用性。 --- ### 总结 以上介绍了四种不同的方式用于解决平滑曲线拟合问题,分别是多项式插值、贝塞尔曲线、B 样条以及手写平滑逻辑。每种方法都有其适用范围特点,具体选择取决于实际应用场景的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值