Arcgis 定义投影、投影变换、导出栅格为tif、矢量转tif

本文详细介绍了如何在ArcGIS中定义投影、进行投影变换,包括栅格和矢量数据的处理方法,以及如何导出栅格为tif格式和矢量转tif的操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、Arcgis 定义投影

1、定义投影

2、设置平移

二、投影变换

1、栅格数据的投影变换

2、矢量数据的投影变换

3、除了上面,好像可以通过定义图层统一更改

三、导出栅格为tif

四、矢量转tif


一、Arcgis 定义投影

1、定义投影

利用ArcToolbox中设置投影坐标信息

点击ArcToolbox工具箱

展开Data Management Tools,选择下面的Projections and Transformations,然后选择Define Projection。

点击Define Projection,弹出图3对话框,在Input Dataset or Feature Class中输入需要定义投影的图层,可以是矢量也可以是栅格;Coordinate system中显示Unknown,表明该图层是没有原始坐标系统的,需要对其进行设置,点击UnKnown后面的按钮,设置相应参数

设置投影为:GCS_WGS_1984

然后确定,等待即可

2、设置平移

设置好投影坐标后,我们发现范围显示为负,即上下左右为负。

这样的话,再次打开就会提示错误:警告: 范围不一致!

下面我们

### 使用 ArcGIS 进行栅格数据聚类并化为斑块 #### 准备工作 为了在 ArcGIS 中实现栅格数据的聚类分析并将结果换为斑块,需先准备好待处理的栅格数据文件。确保这些数据已经过预处理,如投影变换、裁剪等操作。 #### 数据聚类 ArcGIS 提供了多种工具用于执行空间数据分析任务,其中 `Spatial Analyst` 扩展模块下的 `Multivariate Statistics Tools` 工具箱内含有专门针对多变量栅格数据的空间统计功能,可以用来完成初步的数据探索和特征提取。然而对于具体的聚类过程,则推荐采用如下两种方式之一: - **使用 K-means 聚类算法**:通过 Python 脚本调用 scikit-learn 库来实施 K-means 方法[^1]。此方法适用于具有明确数量预期簇的情况。 ```python import arcpy from sklearn.cluster import KMeans import numpy as np # 设置环境参数 arcpy.env.workspace = "C:/data" input_raster = "yourRaster.tif" # 将栅格成数组形式读取 raster_array = arcpy.RasterToNumPyArray(input_raster) # 展平数组以便于后续计算 flat_data = raster_array.reshape(-1, 1).astype(float) # 定义 k 值 (即期望获得多少个类别/簇) k_value = 5 # 创建 KMeans 模型实例并拟合输入数据 model = KMeans(n_clusters=k_value, random_state=0).fit(flat_data) # 获取每个像素所属类别标签 labels = model.labels_ # 构建新的栅格图层表示聚类后的结果 output_clustered_raster = labels.reshape(raster_array.shape) new_raster = arcpy.NumPyArrayToRaster(output_clustered_raster, lower_left_corner=(min_x,min_y), x_cell_size=x_res,y_cell_size=y_res,value_to_nodata=-9999) new_raster.save("clustered_result.tif") ``` - **利用内置工具 Cluster and Outlier Analysis (Anselin Local Moran's I)** 或者其他相似性质的功能来进行自然断点分类(Natural Breaks Classification),这种方法不需要预先指定簇的数量,而是依据数据本身的分布特性自动划分不同等级区间。 #### 结果可视化与矢量化 一旦完成了上述任一类型的聚类运算之后,下一步就是将所得的结果进一步加工成为易于理解和应用的形式——即将连续变化的数值型栅格变为离散化的面状要素(即所谓的“斑块”)。这一步骤可通过以下手段达成: - 对经过聚类处理后的新栅格运用 `Reclassify Tool` 来简化其表达范围; - 接着借助 `Region Group Tool` 实现对相邻同质单元的有效聚合形成独立个体; - 最终依靠 `Raster to Polygon Conversion Tool` 把最终形成的各个斑块导出保存为矢量格式的地图产品。 ```python # Reclassify the clustered raster into distinct classes. reclassified_raster = arcpy.sa.ReclassByRemap(clustered_result,"remap_table.txt") # Perform region group analysis on reclassified raster data. grouped_regions = arcpy.sa.RegionGroup(reclassified_raster,"EIGHT","WITHIN","NO_LINK","#") # Convert grouped regions from raster format to polygon features. polygons_output = arcpy.conversion.RasterToPolygon(grouped_regions,output_polygon_file="patches.shp", simplify=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值