【光谱特征选择】连续投影算法SPA(含python代码)

目录

一、背景

二、代码实现

三、项目代码


一、背景

连续投影算法(Successive Projection Algorithm,SPA)是一种用于光谱分离的简单且有效的算法。它主要应用于高光谱图像处理,用于提取混合光谱数据中的端元(endmembers)。端元是指在高光谱图像中存在的纯物质的光谱签名,这些签名在混合像元的光谱数据中有重要的影响。

SPA的基本原理是通过迭代过程,逐步选出互相尽可能正交的光谱向量。这些向量作为端元,可以用来分解和解释混合光谱数据。具体过程如下:

  1. 初始化:从高光谱数据矩阵中随机选取一个光谱向量作为第一个端元。
  2. 迭代过程:在每次迭代中,计算当前候选端元集中的所有端元与数据矩阵中每个光谱向量的投影长度。选择投影长度最大的光谱向量作为新的端元,加入到候选端元集中。
  3. 终止条件:当选取的端元数量达到预定数量时,迭代过程终止。

主要步骤

  1. 选择初始端元: 从数据矩阵中随机选择一个光谱向量作为初始端元。
  2. 正交化处理: 对每个未选择的光谱向量进行投影计算。
  3. 选择新的端元: 选择投影长度最大的光谱向量作为新的端元。
  4. 重复步骤2和3: 直到选择的端元数量满足要求。

算法优点

  • 简单有效:</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值