Numpy所提供的数据结构是python数据分析的基础
本篇使用numpy库分析亚马逊股票近一年的历史数据
主要目标:(1)计算n日移动平均线;(2)将日均线转换为周均线。
解决处理的函数:卷积函数、date转换函数
使用工具:jupyter notebook,新建一个python3项目
原始数据:
一、简单的数据处理及计算n日移动平均线
- 加载指定的文件
import numpy as np
stock_info = np.loadtxt('AMZN_STOCK.csv',skiprows=1,delimiter=',',usecols=[0,1,2,3,4],dtype='f8,S10,f8,f8,f8',unpack=True)
1、不需要的行shiprows掉(表头),默认没有分隔符,指定分隔符delimiter
2、不加载全部数据的情况下需要指定加载哪些usecols (指定加载列)
3、若希望把每一列加载到单独的数组中可以设置unpack=True,得到一个list,每一列数据作为一个array数组
4、数据默认为浮点格式,因为时间不能使用浮点格式,同时加载时间需要指定数据结构,可以将时间数组设为字符串格式
#指定对应数组
close_info = stock_info[0]
date_info = stock_info[1]
open_info=stock_info[4]
stock_close = close_info[::-1]
stock_open = open_info[::