打卡第十七天~
题目描述
- 难点在于 logN 复杂度
思路 && 代码
1. 暴力法 O(n)
- 最简单的做法,直接遍历判断即可。
class Solution {
public int findPeakElement(int[] nums) {
if(nums.length == 1) {
return 0;
}
if(nums.length == 2) {
return nums[1] > nums[0] ? 1 : 0;
}
if(nums[0] > nums[1]) {
return 0;
}
if(nums[nums.length - 1] > nums[nums.length - 2]) {
return nums.length - 1;
}
// 定义:值大于左右相邻值的元素
for(int i = 1; i < nums.length - 1; i++) {
if(nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) {
return i;
}
}
return -1;
}
}
2. 二分法 O(logN)
- 说到O(logN)的复杂度,那么基本上可以直接往二分走了。
- 注意题干中的nums[0] = nums[n] = -∞,这是我们可以二分的基础。
- 二分思路:取mid,进行nums[mid]、nums[mid + 1] 对比,往较大处递归。
- leetcode 评论区看到这个例子很便于理解:爬山,因为左边、右边的终点都是山底
(题干-∞条件),因此当前往高处走的话,最终肯定能走到山峰。 - 来个例子 + 图,方便理解:[1,2,1,3,5,6,4],注意趋势线,保持左边界上升、右边界下降
class Solution {
public int findPeakElement(int[] nums) {
// 爬山思想:两边的终点都是山底,当前往高爬,肯定能碰到峰顶(终点要下山的嘛)
int left = 0;
int right = nums.length - 1;
// 先确定,每次二分,大的一边肯定有峰值
while(left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > nums[mid + 1]) {
right = mid;
} else {
left = mid + 1;
}
}
// 循环结束后,left == right,此时可以保证 nums[i] 是相邻的峰值
return left;
}
}
二刷
- 爬山思路可给我留下太深印象了
class Solution {
public int findPeakElement(int[] nums) {
// 只要在往上,就一定能到顶
int left = 0, right = nums.length - 1;
while(left < right){
int mid = (left + right) / 2;
if(nums[mid] < nums[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
}