【LeetCode笔记】162. 寻找峰值(Java、二分、偏数学)

打卡第十七天~

题目描述

  • 难点在于 logN 复杂度
    在这里插入图片描述

思路 && 代码

1. 暴力法 O(n)

  • 最简单的做法,直接遍历判断即可。
class Solution {
    public int findPeakElement(int[] nums) {
        if(nums.length == 1) {
            return 0;
        }
        if(nums.length == 2) {
            return nums[1] > nums[0] ? 1 : 0;
        }
        if(nums[0] > nums[1]) {
            return 0;
        }
        if(nums[nums.length - 1] > nums[nums.length - 2]) {
            return nums.length - 1;
        }
        // 定义:值大于左右相邻值的元素
        for(int i = 1; i < nums.length - 1; i++) {
            if(nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) {
                return i;
            }
        }
        return -1;
    }
}

2. 二分法 O(logN)

  • 说到O(logN)的复杂度,那么基本上可以直接往二分走了。
  • 注意题干中的nums[0] = nums[n] = -∞,这是我们可以二分的基础。
  • 二分思路:取mid,进行nums[mid]、nums[mid + 1] 对比,往较大处递归。
  • leetcode 评论区看到这个例子很便于理解:爬山,因为左边、右边的终点都是山底
    (题干-∞条件),因此当前往高处走的话,最终肯定能走到山峰。
  • 来个例子 + 图,方便理解:[1,2,1,3,5,6,4],注意趋势线,保持左边界上升、右边界下降
    在这里插入图片描述
class Solution {
    public int findPeakElement(int[] nums) {
        // 爬山思想:两边的终点都是山底,当前往高爬,肯定能碰到峰顶(终点要下山的嘛)
        int left = 0;
        int right = nums.length - 1;
        // 先确定,每次二分,大的一边肯定有峰值
        while(left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] > nums[mid + 1]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        // 循环结束后,left == right,此时可以保证 nums[i] 是相邻的峰值
        return left;
    }
}

二刷

  • 爬山思路可给我留下太深印象了
class Solution {
    public int findPeakElement(int[] nums) {
        // 只要在往上,就一定能到顶
        int left = 0, right = nums.length - 1;
        while(left < right){
            int mid = (left + right) / 2;
            if(nums[mid] < nums[mid + 1]) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        return left;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值