【LeetCode笔记】76. 最小覆盖子串(字符串、滑动窗口)

本文详细解析了如何使用滑动窗口算法解决寻找字符串中满足特定条件的最小子串问题。通过维护几个关键变量,如need、left、right、count、minSize和startIndex,实现了在O(n)时间复杂度内找到满足条件的子串。文章提供了两种不同的实现方式,并附带了清晰的代码注释,适合巩固滑动窗口和字符串处理的技巧。
摘要由CSDN通过智能技术生成

最近一直在充电基础知识、维护 leetcode 总结博客
今天继续摸一摸新题目吧~

题目描述

  • 感觉和 03. 无重复的最长子串 有点像,都是在字符串上用滑动窗口来找子串
  • 并且都是属于那种,解决一次以后,思路都十分清晰的类型。
    在这里插入图片描述
    在这里插入图片描述

思路 && 代码

  • 步骤:参考了mcdull的这篇题解
  • 注意点:需要维护的变量很多(need、left、right、count、minSize、startIndex),要保证正确维护
  • need[128] :存储当前滑动窗口,对每个字符还需要的数量。为0则正好,负数则说明冗余,正数则还需要。
  • 时间复杂度:O(n),也就是最多 right 跑一遍,left 跑一遍
class Solution {
    // 思路:滑动窗口 + 双指针。正确维护几个变量十分重要
    // 复杂度:最多为O(2 * n) = O(n)
    public String minWindow(String s, String t) {
        if(s == null || t == null || s.length() == 0 || t.length() == 0) {
            return "";
        }

        // need:总是记录当前窗口,每个字符还需的数量。负数为冗余数量
        int[] need = new int[128];
        for(char c : t.toCharArray()) {
            need[c]++;
        }
        int count = t.length(), startIndex = 0, minSize = Integer.MAX_VALUE;
        for(int l = 0, r = 0; r < s.length(); r++) {
            if(need[s.charAt(r)] > 0) {
                count--;
            }
            need[s.charAt(r)]--;
            
            if(count == 0) {
                // 去掉窗口前段的冗余元素,更新 left
                while(l < r && need[s.charAt(l)] < 0) {
                    need[s.charAt(l)]++;
                    l++;
                }
                // 维护 minSize
                if(r - l + 1 < minSize) {
                    minSize = r - l + 1;
                    startIndex = l;
                }
                // 继续下一轮的窗口对比
                need[s.charAt(l)]++;
                l++;
                count++;
            }
        }
        return minSize == Integer.MAX_VALUE ? "" : s.substring(startIndex, startIndex + minSize);
    }
}

二刷

  • 实打实的滑动窗口维护
  • 总的来说还是几个变量的维护,直接看代码和注释吧~
class Solution {
    public String minWindow(String s, String t) {
        // 记录字符需要的数量,负数冗余
        int[] need = new int[128];
        for(char c : t.toCharArray()) {
            need[c]++;
        }
        
        int counts = t.length(), startIndex = 0, minSize = Integer.MAX_VALUE;
        for(int l = 0, r = 0; r < s.length(); r++) {
            // Part 1: 更新 counts && need
            if(need[s.charAt(r)] > 0) {
                counts--;
            }
            need[s.charAt(r)]--;

            // Part 2: 此时满足的情况,更新窗口
            if(counts == 0) {
                // Part 2.1:去除前面的冗余字符
                while(l < r && need[s.charAt(l)] < 0) {
                    need[s.charAt(l)]++;
                    l++;
                }
                // Part 2.2:维护 minSize
                if(r - l + 1 < minSize) {
                    startIndex = l;
                    minSize = r - l + 1;
                }
                // Part 2.3:进行下一轮维护
                need[s.charAt(l++)]++;
                counts++;
            }
        }
        return minSize == Integer.MAX_VALUE ? "" : s.substring(startIndex, startIndex + minSize);
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值