最近一直在充电基础知识、维护 leetcode 总结博客
今天继续摸一摸新题目吧~
题目描述
- 感觉和 03. 无重复的最长子串 有点像,都是在字符串上用滑动窗口来找子串。
- 并且都是属于那种,解决一次以后,思路都十分清晰的类型。
思路 && 代码
- 步骤:参考了mcdull的这篇题解
- 注意点:需要维护的变量很多(need、left、right、count、minSize、startIndex),要保证正确维护。
- need[128] :存储当前滑动窗口,对每个字符还需要的数量。为0则正好,负数则说明冗余,正数则还需要。
- 时间复杂度:O(n),也就是最多 right 跑一遍,left 跑一遍
class Solution {
// 思路:滑动窗口 + 双指针。正确维护几个变量十分重要
// 复杂度:最多为O(2 * n) = O(n)
public String minWindow(String s, String t) {
if(s == null || t == null || s.length() == 0 || t.length() == 0) {
return "";
}
// need:总是记录当前窗口,每个字符还需的数量。负数为冗余数量
int[] need = new int[128];
for(char c : t.toCharArray()) {
need[c]++;
}
int count = t.length(), startIndex = 0, minSize = Integer.MAX_VALUE;
for(int l = 0, r = 0; r < s.length(); r++) {
if(need[s.charAt(r)] > 0) {
count--;
}
need[s.charAt(r)]--;
if(count == 0) {
// 去掉窗口前段的冗余元素,更新 left
while(l < r && need[s.charAt(l)] < 0) {
need[s.charAt(l)]++;
l++;
}
// 维护 minSize
if(r - l + 1 < minSize) {
minSize = r - l + 1;
startIndex = l;
}
// 继续下一轮的窗口对比
need[s.charAt(l)]++;
l++;
count++;
}
}
return minSize == Integer.MAX_VALUE ? "" : s.substring(startIndex, startIndex + minSize);
}
}
二刷
- 实打实的滑动窗口维护!
- 总的来说还是几个变量的维护,直接看代码和注释吧~
class Solution {
public String minWindow(String s, String t) {
// 记录字符需要的数量,负数冗余
int[] need = new int[128];
for(char c : t.toCharArray()) {
need[c]++;
}
int counts = t.length(), startIndex = 0, minSize = Integer.MAX_VALUE;
for(int l = 0, r = 0; r < s.length(); r++) {
// Part 1: 更新 counts && need
if(need[s.charAt(r)] > 0) {
counts--;
}
need[s.charAt(r)]--;
// Part 2: 此时满足的情况,更新窗口
if(counts == 0) {
// Part 2.1:去除前面的冗余字符
while(l < r && need[s.charAt(l)] < 0) {
need[s.charAt(l)]++;
l++;
}
// Part 2.2:维护 minSize
if(r - l + 1 < minSize) {
startIndex = l;
minSize = r - l + 1;
}
// Part 2.3:进行下一轮维护
need[s.charAt(l++)]++;
counts++;
}
}
return minSize == Integer.MAX_VALUE ? "" : s.substring(startIndex, startIndex + minSize);
}
}