【LeetCode笔记】84. 柱状图中最大的矩形(字符串、单调栈)

题目描述

  • 接雨水有点像,但是具体做法还是有点不同。
    在这里插入图片描述

思路 && 代码

暴力法只能过 94 / 96 的样例:复杂度O(n^2) & O(1),一个双重循环遍历所有可行矩阵。
这里就直接用 O(n) & O(n)的做法了(空间换时间!)

  • 思路:参考了Ikaruga的题解,循环找出以某列为高的最大矩阵,再对比这些矩阵大小。
  • 时间复杂度:O(n),最多对所有元素 存储一次 + 计算一次。
  • 计算值:以当前列为最高列,可行的最大矩阵( 也就代表该矩阵【左边界,右边界】的列,都大于或等于当前列)
  • 边界处理:数组前、后添加一个0,保证不会漏算
    (比如恒递增情况,不添0的话直接不计算了)
class Solution {
    public int largestRectangleArea(int[] heights) {
        int res = 0;
        // 单调栈:存储 index
        Deque<Integer> stack = new ArrayDeque<>();
        // 前后添加0:处理边界,让heights[0], heights[len - 1] 都可以参与比较(参考恒递增情况)
        int[] newHeights = new int[heights.length + 2];
        for(int i = 1; i < heights.length + 1; i++) {
            newHeights[i] = heights[i - 1];
        }
        // O(n):遍历新数组
        for(int i = 0; i < newHeights.length; i++) {
            // 栈不为空,且当前栈顶更大(出现递减情况)时
            while(!stack.isEmpty() && newHeights[stack.peek()] > newHeights[i]) {
                int index = stack.pop(); // 用于获取当前高
                int l = stack.peek(); // 获取左边第一个比当前列矮的下标
                int r = i; // 右边第一个比当前列矮的下标
                // 计算:以stack.pop()为高,可行的最大矩形
                res = Math.max(res, (r - l - 1) * newHeights[index]);
            }
            // 加入当前下标(此时保持递增)
            stack.push(i);
        }
        return res;
    }
}
  • 无注释版
class Solution {
    public int largestRectangleArea(int[] heights) {
        int res = 0;
        Deque<Integer> stack = new ArrayDeque<>();
        int[] newHeights = new int[heights.length + 2];
        for(int i = 1; i < heights.length + 1; i++) {
            newHeights[i] = heights[i - 1];
        }
        for(int i = 0; i < newHeights.length; i++) {
            while(!stack.isEmpty() && newHeights[stack.peek()] > newHeights[i]) {
                int index = stack.pop();
                int l = stack.peek();
                int r = i;
                res = Math.max(res, (r - l - 1) * newHeights[index]);
            }
            stack.push(i);
        }
        return res;
    }
}

二刷

  • 单调栈,只能说 Dalao 思路还是强
class Solution {
    public int largestRectangleArea(int[] heights) {
        int[] newHeights = new int[heights.length + 2];
        for(int i = 1; i <= heights.length; i++) {
            newHeights[i] = heights[i - 1];
        }

        Deque<Integer> stack = new ArrayDeque<>();
        int max = 0;
        for(int i = 0; i < newHeights.length; i++) {
            // 当前栈顶为最高列的可行值
            while(!stack.isEmpty() && newHeights[i] < newHeights[stack.peek()]) {
                int now = stack.poll();
                int left = stack.peek(); // 左边第一个比 now 对应值小的下标
                int right = i; // 当前即是右边第一个比 now 对应值小的下标
                max = Math.max(max, (right - left - 1) * newHeights[now]); // 维护 max
            }
            // 栈中比当前大的都去掉了,now 可以加入栈,并保持单调增了。
            stack.push(i);
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值