数据库复习——关系数据理论中的几个重要概念(闭包,逻辑蕴含,覆盖...)

前言

关系数据理论中几个比较抽象的概念

正文

一、函数依赖

  • 定义
    设R(U)是属性集合U={A1,A2,…,An}上的一个关系模式,X, Y是U上的两个子集,若对R(U)的任意一个可能的关系r, r中不可能有两个元组满足在X中的属性值相等而在Y中的属性值不等,则称“X函数决定Y”或“Y函数依赖于X”, 记作X→Y。
  • 函数依赖的特性
    (1)对X→Y,但Y∉X, 则称X→Y为非平凡的函数依赖;
    (2)若X→Y,则任意两个元组,若X上值相等,则Y上值必然相等,则称X为决定因素;
    (3)若X→Y ,Y→X, 则记作X↔Y;
    (4)若Y不函数依赖于X,则记作X ⇏ \nRightarrow Y;
    (5)X→Y,有基于模式R的,则要求对任意的关系r成立;有基于具体关系r的,则要求对某一关系r成立;
    (6)如一关系r的某属性集X, r中根本没有X上相等的两个元组存在,则X→Y恒成立;

二、逻辑蕴含是什么

设F是关系模式R(U)中的一个函数依赖集合,X, Y是R的属性子集,如果从F中的函数依赖能够推导出X→Y,则称F逻辑蕴涵X→Y, 或称X→Y是F的逻辑蕴涵。

比如:F含有依赖关系A→B,B→C, 则可推出A→C,所以F逻辑蕴含A→C

三、闭包是什么

被F逻辑蕴涵所有函数依赖集合称为F的闭包(Closure),记作 F+。

  • 闭包是由关系模式R直观得到的函数依赖F所推出的所有隐含的或未隐含的(直观的)函数依赖的集合
  • 小集合大闭包,包含了平凡的函数依赖

示例:设R=ABC,F={A→B,B→C},则F+的组成如下,即由如下形式的X→Y构成:
(1)X包含A,而Y任意, 如ABC→AB,A→C,AB→BC,…
(2)X包含B但不含A且Y不含A,如BC→B,B→C,B→Φ,…
(3)X→Y是C→C或C→Φ

四、属性(集)闭包

对R(U, F), X→U, U = { A1,A2,…,An}, 令:
X+F = { Ai | 用Armstrong Axiom A1,A2,A3可从F导出X→Ai } 称X+F为X关于F的属性(集)闭包。
简单说就,就是能由X在F范围内,能推导出来的所有属性的集合

五、覆盖和最小覆盖

覆盖:对R(U)上的两个函数依赖集合F、G, 如果F+= G+,则称F和G是等价的,也称F覆盖G或者G覆盖F。
若F满足以下条件,则称F为最小覆盖(minimal Cover)或最小依赖集若F满足以下条件,则称F为最小覆盖(minimal Cover)或最小依赖集(minimal set of Functional Depandency):

  1. F中每个函数依赖的右部是单个属性; (右边只有一个属性)
  2. 对任何X→A∈F, 有F - { X→A }不等价于F;(每个函数依赖不可或缺)
  3. 对任何X→A∈F, Z→X, ( F - { X→A })∪{Z→A}不等价于F。(每个函数依赖的左端都没有多余属性)

注意:每个函数依赖集F都有等价的最小覆盖F’。

在这里插入图片描述

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值