多元统计分析及R语言建模(第五版)——第7章 聚类分析课后习题

本文详细探讨了使用R语言进行聚类分析的方法,包括最短距离法、最长距离法和类平均法,并通过实例分析了全国31个省、市、自治区1996年和2007年城镇居民生活消费结构。通过对比不同方法的聚类效果,发现类平均法在处理消费结构数据时表现优秀,适合分为四类。此外,还模拟了不同样本量(n=20, 50, 100, 1000, 10000)的聚类情况,观察聚类效果的变化。" 132264011,19673537,面向对象编程实现图像分割,"['计算机视觉', '图像处理', '面向对象编程', 'Python', '人工智能']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第7章 聚类分析

文章会用到的数据请在这个网址下下载多元统计分析及R语言建模(第五版)数据
练习题
1)下面给出5个元素两两之间的距离,利用最短距离法、最长距离法和类平均法做出5个元素的谱系聚类,画谱系图并做出比较。

x1 <- c(0,4,6,1,6)
x2 <- c(4,0,9,7,3)
x3 <- c(6,9,0,10,5)
x4 <- c(1,7,10,0,8)
x5 <- c(6,3,5,8,0)
x <- rbind(x1,x2,x3,x4,x5)
y <- as.dist(x)
y

在这里插入图片描述
最短距离法

hc = hclust(y,"single")
hc

在这里插入图片描述

names(hc)

在这里插入图片描述

data.frame(hc $ merge,hc $ height)

在这里插入图片描述

plot(hc)

在这里插入图片描述
最长距离法

hc = hclust(y)
hc

在这里插入图片描述

names(hc)

在这里插入图片描述

data.frame(hc $ merge,hc $ height)

在这里插入图片描述

plot(hc)

在这里插入图片描述
类平均距离法

hc = hclust(y,"average")
hc

在这里插入图片描述

names(hc)

在这里插入图片描述

data.frame(hc $ merge,hc $ height)

在这里插入图片描述

plot(
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值