HDUOJ 2036改革春风吹满地
Problem Description
“ 改革春风吹满地,
不会AC没关系;
实在不行回老家,
还有一亩三分地。
谢谢!(乐队奏乐)”
话说部分学生心态极好,每天就知道游戏,这次考试如此简单的题目,也是云里雾里,而且,还竟然来这么几句打油诗。
好呀,老师的责任就是帮你解决问题,既然想种田,那就分你一块。
这块田位于浙江省温州市苍南县灵溪镇林家铺子村,多边形形状的一块地,原本是linle 的,现在就准备送给你了。不过,任何事情都没有那么简单,你必须首先告诉我这块地到底有多少面积,如果回答正确才能真正得到这块地。
发愁了吧?就是要让你知道,种地也是需要AC知识的!以后还是好好练吧…
Input
输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1, y1, x2, y2… xn, yn),为了简化问题,这里的所有坐标都用整数表示。
输入数据中所有的整数都在32位整数范围内,n=0表示数据的结束,不做处理。
Output
对于每个测试实例,请输出对应的多边形面积,结果精确到小数点后一位小数。
每个实例的输出占一行。
Sample Input
3 0 0 1 0 0 1
4 1 0 0 1 -1 0 0 -1
0
Sample Output
0.5
2.0
这道题的核心在于找到一个方法快速的求出多边形的面积,在高数中我们学过三角形面积等于向量叉乘的一半,于是可以利用这个特性将多边形分解为n-2个三角形(n为顶点个数)。有兴趣的话可以了解这位大佬的博客查看求面积原理
Submit
#include<stdio.h>
#include<math.h>
int main() {
int n, i, x[100], y[100], x1, y1, x2, y2;
double sum;
while (scanf("%d", &n), n) {
sum = 0;
for (i = 0; i < n; i++)
scanf("%d %d", &x[i], &y[i]);
for (i = 1; i < n - 1; i++) {
x1 = x[i] - x[0];
y1 = y[i] - y[0];
x2 = x[i + 1] - x[0];
y2 = y[i + 1] - y[0];
sum += (double)(x1 * y2 - x2 * y1) / 2;
}
printf("%.1f\n", fabs(sum));
}
return 0;
}