337. 打家劫舍 III
题目描述:
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
题解:
1.对每一个节点讨论偷和不偷该节点所能获得的最大收益。
①选择偷,则该节点的子节点就不能再偷了,只能继续向下查看子节点的子节点的收益。
②选择不偷,则返回偷或者不偷左右节点能获得的最大收益。
该过程可以递归的进行,定义返回的结构体
struct info {
int yes;//偷该节点获得的最大收益
int no;//不偷该节点获得的最大收益
info(int y, int n) : yes(y), no(n){}
};
完整代码:
class Solution {
public:
struct info {
int yes;//偷这家获得的最大收益
int no;//不偷这家获得的最大收益
info(int y, int n) : yes(y), no(n){}
};
int rob(TreeNode* root) {
info* ans = process(root);
//返回max(偷根节点, 不偷根节点)
return max(ans->yes, ans->no);
}
//该过程递归的进行
info* process(TreeNode* root) {
if(!root) {
//遇到空节点,返回(0, 0),避免对空节点做额外处理
return new info(0, 0);
}
info* left = process(root->left);//递归的获得左子树的信息
info* right = process(root->right);//递归的获得右子树的信息
//选择偷该节点,
//则收益为 = 不偷左子树 + 不偷右子树 + 该节点的收益
int yes = left->no + right->no + root->val;
//不偷该节点
//收益 = max(偷左子树,不偷左子树) + max(偷右子树,不偷右子树);
int no = max(left->yes, left->no) + max(right->yes, right->no);
//返回本节点的信息
return new info(yes, no);
}
};