运行pytorch 显存充足却显示OOM(out of memory)

背景:

显存容量剩下14000MB,但是我把代码的batchsize改成1也不能跑起来。

问题:

情况1:有缓存未释放

情况2:代码本身有问题

解决方案:

我遇到的是情况2.
因为我的代码对于CIFAR100和CUB200数据集用的是不同的resnet18,对于CIFAR100用的是专属的cifarresnet,修改了网络结构来适应CIFAR100数据集,所以在使用CUB200数据集的时候,–model 参数不能省略,因为代码里默认的超参数是cifarresnet,两者结构不一样。
所以代码运行中,在前向传播的时候会报错,不过报错内容是Out of memory,此时可以从代码本身找找问题。

情况1:
使用fuser -v /dev/nvidia*可以查看每张显卡对应的进程号PID,可以将未在运行的PID kill掉。
kill 9 31200 类似。
要小心别把其他显卡上运行的多GPU进程kill了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值