同济高等数学第二章之经典错误知识点笔记

本文详细介绍了微积分的基本概念,包括导数的定义、微分的几何意义,以及它们在切线和法线方程中的应用。同时,探讨了可微、可导和连续的关系,并列举了基本初等函数的导数格式和各种求导法则,如复合函数、隐函数、反函数和参数方程的求导。此外,还提及了高阶导数的重要性质和常用公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.导数

1.概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可导是左右导数都存在且相等充分必要条件

2.微分

定理一
在这里插入图片描述
定理二:
y=f(x)在点x0处可微的充分必要条件是f(x)在点x0处可导。
在这里插入图片描述

3.导数与微分的几何意义

在这里插入图片描述
△y=tan*△
切线方程
在这里插入图片描述
法线方程
法线:法线指平面上垂直于曲线在某点的切线的一条线。
在这里插入图片描述

法线*切线=-1

微分
在这里插入图片描述

4.可微,可导,连续之间的关系

在这里插入图片描述
连续不一定可微,或可导。例如:|x|。

f(x)可导不能推出f'(x)连续,也不能推出f'(x)的极限存在
例如:
在这里插入图片描述

5.基本初等函数导数格式

在这里插入图片描述

6.求导法则

1.有理运算法则

在这里插入图片描述

2.复合函数求导法

在这里插入图片描述

3.隐函数求导法

在这里插入图片描述

4.反函数的导数

前提f(x)处处可导,且f'(x)≠0
在这里插入图片描述

5.参数方程求导

在这里插入图片描述

7.高阶导数

在这里插入图片描述
注:如果函数f(x)在点x处n阶可导,则在点x的某领域内f(x)必定具有一切低于n阶的导数

常用的高阶导数公式:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值