Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.

Let’s remember how Fibonacci numbers can be calculated. F0 = 0, F1 = 1, and all the next numbers are Fi = Fi - 2 + Fi - 1.

So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, …

If you haven’t run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number n by three not necessary different Fibonacci numbers or say that it is impossible.

Input
The input contains of a single integer n (0 ≤ n < 109) — the number that should be represented by the rules described above. It is guaranteed that n is a Fibonacci number.

Output
Output three required numbers: a, b and c. If there is no answer for the test you have to print “I’m too stupid to solve this problem” without the quotes.

If there are multiple answers, print any of them.

Examples
Input
3
Output
1 1 1
Input
13
Output
2 3 8

#include"stdio.h"
int main()
{
int n;
while(~scanf("%d",&n))
{
printf("%d %d %d\n",0,0,n);
}
return 0;
}

08-06 3273
12-15 409  10-07 289
10-24 311
02-27 533
07-29 54
04-16 1916
05-29 9815
11-10 1070
10-05 588
05-15 2733
05-25 3486
12-20 3489
07-14 412
11-19 2万+ 点击重新获取   扫码支付  余额充值