机器学习
文章平均质量分 62
江_小_白
一个菜鸟的学习之路
展开
-
transformer
论文:Attention Is All You Need。原创 2023-07-02 17:29:08 · 863 阅读 · 0 评论 -
关于深度学习方面的一些概念
一些深度学习概念原创 2023-05-23 22:16:08 · 426 阅读 · 0 评论 -
RuntimeError: CUDA error: device-side assert triggered和Unable to get repr for <class ‘torch.Tensor
RuntimeError: CUDA error: device-side assert triggered和Unable to get repr for原创 2022-10-10 17:00:15 · 670 阅读 · 0 评论 -
transformer Bert模块的一些知识
bert一些相关知识原创 2022-09-13 22:24:04 · 485 阅读 · 0 评论 -
one of the variables needed for gradient computation has been modified by an inplace
one of the variables needed for gradient computation has been modified by an inplace原创 2022-08-09 20:25:02 · 1673 阅读 · 2 评论 -
模型预测值全零或者全一
预测结果全零或全一原创 2022-08-06 16:33:53 · 1659 阅读 · 0 评论 -
pytorch实现梯度反转层(Gradient Reversal Layer)
GRL(Gredient Reversal Layer) 梯度反转层实现原创 2022-06-14 22:11:52 · 1296 阅读 · 1 评论 -
gensim.models word2vec 参数
Word2vec 参数原创 2022-06-08 08:08:39 · 151 阅读 · 0 评论 -
机器学习-神经网络为什么需要非线性(激活函数)
机器学习-神经网络为什么需要非线性(激活函数)这篇文章写的很好转载 2022-04-12 18:46:33 · 222 阅读 · 0 评论 -
贝叶斯算法
一篇贝叶斯的文章 原文连接:https://blog.csdn.net/weixin_40849273/article/details/83651201原创 2021-09-15 22:04:16 · 99 阅读 · 0 评论 -
机器学习笔记七—Transformer
系列文章目录机器学习笔记一—机器学习基本知识机器学习笔记二—梯度下降和反向传播机器学习笔记三—卷积神经网络与循环神经网络机器学习笔记四—机器学习可解释性机器学习笔记五—机器学习攻击与防御机器学习笔记六—模型压缩机器学习笔记一—Transformer 文章目录系列文章目录前言一、self—attention二、模型压缩的方法1、网络剪枝(Network Pruning)2、知识蒸馏(Knowledge Distillation)3、参数量化(Parameter Quantization)原创 2021-09-07 20:26:55 · 364 阅读 · 0 评论 -
机器学习笔记六——模型压缩
系列文章目录机器学习笔记一—机器学习基本知识机器学习笔记二—梯度下降和反向传播机器学习笔记三—卷积神经网络与循环神经网络机器学习笔记四—机器学习可解释性机器学习笔记五—机器学习攻击与防御机器学习笔记六—模型压缩 文章目录系列文章目录前言一、模型压缩的意义二、模型压缩的方法1、网络剪枝(Network Pruning)2、知识蒸馏(Knowledge Distillation)3、参数量化(Parameter Quantization)4、架构设计(Architecture Design)原创 2021-08-29 16:22:24 · 1425 阅读 · 0 评论 -
机器学习笔记五—机器学习攻击与防御
系列文章目录机器学习笔记一机器学习笔记二机器学习笔记三机器学习笔记四机器学习笔记五 文章目录系列文章目录前言一、循环神经网络二、Jordan network和Elman network三、LSTM和GRU总结前言 这一节在重新回顾一下循环神经网络的相关知识(RNN)一、循环神经网络 循环神经网络是一种具有记忆力的网络,它可以记忆前边的输入,使得前边的输入n对后边n+1的输出产生影响注:蓝色框为记忆单元,初始值赋值为(0,0),所有的权重设置为1,bias为0原创 2021-08-28 23:26:06 · 1015 阅读 · 0 评论 -
机器学习笔记四—机器学习可解释性
系列文章目录机器学习笔记一机器学习笔记二机器学习笔记三机器学习笔记四文章目录系列文章目录前言一、卷积神经网络二、卷积神经网络提取特征1.卷积2.多通道卷积总结前言本节介绍一些有关卷积神经网络(CNN)的相关知识一、卷积神经网络 人在认知图像时是分层抽象的,首先理解的是颜色和亮度,然后是边缘、角点、直线等局部细节特征,接下来是纹理、几何形状等更复杂的信息和结构,最后形成整个物体的概念。 卷积神经网络工作时模拟人认知图像的过程,它由多个卷积层构成,每个卷积层包含多个卷积核,用这些卷原创 2021-08-20 20:06:11 · 681 阅读 · 0 评论 -
机器学习笔记三—卷积神经网络与循环神经网络
系列文章链接机器学习笔记二提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章链接前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文原创 2021-08-18 17:30:48 · 4717 阅读 · 0 评论 -
机器学习笔记二—梯度下降和反向传播
系列文章链接机器学习笔记一机器学习笔记三前言在上一节中已经完成了机器学习的总体概念学习,这一节则具体学习一下梯度下降(Gradient Descent)一、梯度一个函数某个点的梯度是来源于函数的导数或者偏导数θ\thetaθ0点的梯度为L对θ\thetaθ1、θ\thetaθ2求导构成的二维向量二、梯度下降1.梯度下降的方法梯度下降是沿着梯度相反的方向走,即更新参数的时候是用原参数减去学习率乘以梯度η\etaη为学习率,由公式可知,当η\etaη大的时候更新的幅度大,η\e原创 2021-08-18 17:19:23 · 2402 阅读 · 0 评论 -
机器学习笔记一—机器学习基本知识
文章目录前言一、机器学习的目的二、损失函数三、梯度下降(Gradient Descent)1.使用梯度下降的目的总结前言根据李宏毅教授的视频重新学习机器学习,大概记录一下学习过程一、机器学习的目的机器学习就是由机器自动找出一个函数函数分为两大类“Regression”和“Classification”Regression输出的是数值的函数就是回归函数(Regression)Classification输出的结果是Yes or No(种类) 就是分类函数(Classification)原创 2021-08-18 00:28:13 · 965 阅读 · 0 评论