transformer Bert模块的一些知识

( input_ids: typing.Optional[torch.Tensor] = None,
attention_mask: typing.Optional[torch.Tensor] = None,
token_type_ids: typing.Optional[torch.Tensor] = None,
position_ids: typing.Optional[torch.Tensor] = None,
head_mask: typing.Optional[torch.Tensor] = None,
inputs_embeds: typing.Optional[torch.Tensor] = None,
labels: typing.Optional[torch.Tensor] = None,
next_sentence_label: typing.Optional[torch.Tensor] = None,
output_attentions: typing.Optional[bool] = None,
output_hidden_states: typing.Optional[bool] = None,
return_dict: typing.Optional[bool] = None )

bert模型的输入参数,具体的参数信息可以从官网中查询到
这里重点关注一下position_ids这个参数,这个参数是个可选参数,可以自定义位置参数也可以不输入,但是值得注意的是,如果没有位置ID传递给模型,则ID将自动创建为绝对位置嵌入。即 0,1,2……SentenceLength。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值