洛谷 P1443 马的遍历(bfs)

题目链接:

https://www.luogu.com.cn/problem/P1443

思路:

一道广度优先搜索求最短路的裸题
注意数字左对齐宽n格用printf输出格式为%-nd

代码:

#include<bits/stdc++.h>

using namespace std;

const int maxn = 404;
int n, m, x, y;
int mat[maxn][maxn];
queue<pair<int, int> > que;

int d;
inline void check(int a, int b) {
	if(a >= 1 && b >= 1 && a <= n && b <= m && mat[a][b] == -1) {
		mat[a][b] = d;
		que.push(make_pair(a, b));
	}
}

int main() {
#ifdef MyTest
	freopen("Sakura.txt", "r", stdin);
#endif	
	scanf("%d %d %d %d", &n, &m, &x, &y);
	for(int i = 1; i <= n; ++i) {
		for(int j = 1; j <= m; ++j) {
			mat[i][j] = -1;
		}
	}
	mat[x][y] = 0;
	que.push(make_pair(x, y));
	while(!que.empty()) {
		pair<int, int> now = que.front(); que.pop();
		int a = now.first, b = now.second;
		d = mat[a][b] + 1;
		check(a - 2, b - 1);
		check(a - 2, b + 1);
		check(a - 1, b - 2);
		check(a - 1, b + 2);
		check(a + 1, b - 2);
		check(a + 1, b + 2);
		check(a + 2, b - 1);
		check(a + 2, b + 1);
	}
	for(int i = 1; i <= n; ++i) {
		for(int j = 1; j <= m; ++j) {
			printf("%-5d", mat[i][j]);
		}
		putchar('\n');
	}
	return 0;	
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值