第二单元 伪分布式安装、HDFS Shell
1、环境
操作系统: CentOS-7-x86_64-DVD-1810.iso
JDK: jdk-8u131-linux-x64.tar.gz
hadoop: hadoop-2.8.1.tar.gz
3、安装
3.1 JDK安装 、配置环境变量
vim /etc/profile
export JAVA_HOME=/usr/local/src/jdk1.8.0_131
export HADOOP_HOME=/opt/hadoop-2.8.1
export PATH=$JAVA_HOME/bin:$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
source /etc/profile
3.2 配置免密登录(RSA MD5)
生成公钥和私钥
ssh-keygen -t rsa 或者 ssh-keygen
cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys
3.3 hadoop伪分布式安装
【【修改hadoop配置文件】】
hadoop-env.sh
配置JAVA_HOME
core-site.xml
<configuration>
<!-- 指定HADOOP所使用的文件系统,hdfs的namenode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://192.168.172.133</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录,hadoop的工作目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop/tmp</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<!--指定hdfs副本的数量 -->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<!-- 指定mr运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
yarn-site.xml
<configuration>
<!-- 指定yarn的ResourceManager的地址-->
<property>
<name>yarn.resoucemanager.hostname</name>
<value>hdp1</value>
</property>
<!-- reducer获取数据的方式,数据调度机制(分组等操作) -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
格式化HDFS文件系统
hadoop namenode -format
4.1 启动
start-dfs.sh
4.2 查看进程、访问UI
jps
http://192.168.172.133:50070
4.3 停止
stop-dfs.sh
5、HDFS Shell (HDFS 基本命令)
hadoop fs -ls /
hadoop fs -lsr
hadoop fs -mkdir /user/hadoop
hadoop fs -put a.txt /user/hadoop/
hadoop fs -get /user/hadoop/a.txt /
hadoop fs -cat /user/hadoop/a.txt
hadoop fs -rm /user/hadoop/a.txt
hadoop fs -rmr /user/hadoop/a.txt
hadoop fs -cp src dst
hadoop fs -mv src dst
hadoop fs -text /user/hadoop/a.txt
hadoop fs -copyFromLocal localsrc dst 与hadoop fs -put功能类似。
hadoop fs -moveFromLocal localsrc dst 将本地文件上传到hdfs,同时删除本地文件
6.1 HDFS写流程
客户端要向HDFS写数据,首先要跟NameNode通信以确认可以写文件并获得接收文件block的DataNode,然后客户端按顺序将文件block传递给相应DataNode,并有接收到block的DataNode负责向其他DataNode复制block副本。
1)客户端Client跟NameNode通信请求上传文件,NameNode检查目标文件是否存在,父目录是否存在
2)NameNode响应客户端,返回是否可以上传
3)Client会先对文件进行切分,比如一个block块128M,文件300M就会被切分成3个块,两个128M,一个44M。请求第一个block该传输到哪些DataNode服务器上
4)NameNode返回DataNode服务器地址。(机架感知)
5)Client请求第一台DataNode上传数据 (RPC调用,建立pipeline) ,第一个DataNode收到请求会继续调用第二个DataNode,然后第二个调用第三个DataNode, 将整个pipeline建立完成,逐级返回客户端。
6) 当一个block传输完成时,Client再次请求NameNode上传第二个block的服务器。
6.2 HDFS读流程
客户端将要读取的文件路径发送给NameNode,NameNode获取文件的元信息返回给客户端,客户端根据返回的信息找到DataNode 逐个获取文件的block 并在客户端本地进行数据合并从而获得整个文件。
1)客户端跟NameNode通信查询元数据(block所在的DataNode节点),找到文件块所在的DataNode的服务器
2)挑选一台DataNode(就近原则,然后随机)服务器,请求建立socket流
3)DataNode开始发送数据
4)客户端以packet(数据包: 一个packet为64kb )为单位接收,先在本地缓存然后写入到目标文件中,后面的block块就相当于append(追加)到前面的block块,最后合成最终需要的文件。
7、HDFS-JAVA-API
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.bawei</groupId>
<artifactId>hdfsdemo</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.8.1</version>
</dependency>
</dependencies>
</project>
package com.zsw.hdfs;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.IOException;
/**
* Created by xiang on 2019/12/28.
*/
public class HDFSClient {
public static void main(String[] args) throws IOException {
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://192.168.172.133:8020");
FileSystem fs = FileSystem.get(conf);
fs.copyFromLocalFile(new Path("F://12.txt"), new Path("/"));
}
}