以下为力扣题友的思路及本人代码
题目
给你一个长度为 n 的整数数组,请你判断在最多改变 1 个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中所有的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。
示例1
输入: nums = [4,2,3]
输出: true
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
示例2
输入: nums = [4,2,1]
输出: false
解释: 你不能在只改变一个元素的情况下将其变为非递减数列。
说明
- 1 <= n <= 104
- -105<= nums[i] <= 105
题友思路 贪心解析:“下降”至多出现一次
如果存在 i,使得 nums[i+1] < nums[i],我们就说出现了一次“下降”。一共有三种情况:
- 不存在下降的情况,即下降次数为 0,返回 true。
- 只出现了一次下降,将下降后的元素记为 nums[x](1 <= x <n)。此时,可以尝试将 nums[x-1] 变小,或者将 nums[x] 变大,以达到“非递降”的目的。如果 x=1 或者 x=n-1,只需要将 nums 中第一个元素减小(最差到 Integer.MIN_VALUE),或者最后一个元素增大总能满足要求;如果 1<x<n-1,若将 nums[x] 变大必须要求 nums[x-1] <= nums[x+1],若将 nums[x-1] 变小,必须要求 nums[x-2] <= nums[x]。
- 出现超过一次的下降,肯定不能只通过调整一个元素完成要求,返回 false。
本人代码
class Solution {
public boolean checkPossibility(int[] nums) {
if(nums.length <= 1)
return true;
int count = 0;
for(int i=0; i<nums.length-1; i++)
{
if(nums[i] > nums[i+1])
{
count ++;
if(count > 1)
return false;
if(i>0 && i<nums.length-2 && nums[i]>nums[i+2] && nums[i-1]>nums[i+1])
return false;
}
}
return true;
}
}
题友思路出处如下
作者:liberg
链接:https://leetcode-cn.com/problems/non-decreasing-array/solution/tan-xin-jie-xi-xia-jiang-zhi-duo-chu-xia-by3d/
来源:力扣(LeetCode)