原题 335. 路径交叉
给你一个整数数组 distance 。 从 X-Y 平面上的点 (0,0) 开始,先向北移动 distance[0] 米,然后向西移动
distance[1] 米,向南移动 distance[2] 米,向东移动 distance[3]
米,持续移动。也就是说,每次移动后你的方位会发生逆时针变化。 判断你所经过的路径是否相交。如果相交,返回 true ;否则,返回 false。
输入:distance = [2,1,1,2]
输出:true
分析
分析一下题目,如果每条边都和所有边都判断一下是否相交,那程序将变得啰嗦而又低效。能否只判断一下和最近的几条边是否相交。答案是可以的。先分类讨论一下,对于某一条确定的边,只有四种方式和其相交(即上,下,左,右)。
如下图以第i
条边为例。
可以发现第四张图也可以看作第i+6
条和第i+1
条边相交。简化以后其实就是三种情况。
也就是说只讨论i+5
,i+4
,i+3
和i
的相交情况。间隔5 条边以内的相交已经保证可以检测到了,那间隔5 条边以上的相交呢?
证明
如图,可以很直观地发现,要能和i
边相交必需要让阴影部分和i
边有交集。显然间隔5 条边以上的边 是不可能在 他们之间的边不相交 的情况下 和第i
条边相交的,也就是说只要判断5条边以内的情况就好了。
代码
bool isSelfCrossing(vector<int>& distance) {
int n = distance.size();
for (int i = 3; i < n; i++) {
if (i >= 5 && distance[i] + distance[i - 4] >= distance[i - 2] &&
distance[i - 1] + distance[i - 5] >= distance[i - 3] &&
distance[i - 2] > distance[i - 4] && distance[i - 1] <= distance[i - 3])
return true;
if (i >= 4 && distance[i - 1] == distance[i - 3] &&
distance[i] + distance[i - 4] >= distance[i - 2])
return true;
if (distance[i] >= distance[i - 2] && distance[i - 1] <= distance[i - 3])
return true;
}
return false;
}
优化
可以发现 判断i
的边界很多余,其实只有前几次需要判断。这里利用switch
减少不必要的判断。性能提高了1/3
bool isSelfCrossing(vector<int>& d) {
int n = d.size(),i = 2;
while (++i < n) {
switch (i) {
default:
case 5:
if (d[i] + d[i - 4] >= d[i - 2] && d[i - 1] + d[i - 5] >= d[i - 3] &&
d[i - 2] > d[i - 4] && d[i - 1] <= d[i - 3])
return true;
case 4:
if (d[i - 1] == d[i - 3] && d[i] + d[i - 4] >= d[i - 2]) return true;
case 3:
if (d[i] >= d[i - 2] && d[i - 1] <= d[i - 3]) return true;
}
}
return false;
}
另外按照语法把while
放入switch
里也是可以的,可以可以减少switch
次数。测试候性能没有明显变化。为了提高可读性就没采用了。