SwanLab:来自中国的深度学习轻量级可视化工具入门教程

本文,就来给大家介绍一款新型的机器学习可视化工具,能够让人工智能研发过程变得更加简单明了。

引言

人工智能、深度学习方向的项目,和数据可视化是紧密相连的。

模型训练过程中梯度下降过程是什么样的?损失函数的走向如何?训练模型的准确度怎么变化的

清楚这些数据,对我们模型的优化至关重要。

由于人工智能项目往往伴随着巨大数据量,用肉眼去逐个数据查看、分析是不现实的。这时候就需要用到数据可视化和日志分析报告。

TensorFlow自带的Tensorboard在模型和训练过程可视化方面做得越来越好。但是,也越来越臃肿,对于初入人工智能的同学来说有一定的门槛。

人工智能方面的项目变得越来越规范化,以模型训练、数据集准备为例,目前很多大公司已经发布了各自的自动机器学习平台,让工程师把更多精力放在优化策略上,而不是在准备数据、数据可视化方面。

SwanLab

官网https://swanlab.cn

训练过程社区https://swanlab.cn/benchmarks

swanlab,来自中国团队情感机器,这款工具能够帮助跟踪你的机器学习项目。它能够自动记录模型训练过程中的超参数和输出指标,然后可视化和比较结果,并快速与同事共享结果。

通过swanlab,能够给你的机器学习项目带来强大的交互式可视化调试体验,能够自动化记录Python脚本中的图标,并且实时在网页仪表盘展示它的结果,例如,损失函数、准确率、召回率,它能够让你在最短的时间内完成机器学习项目可视化图片的制作。

image

总而言之,swanlab有这些特点:

  • 整体UI交互体验拉满,很好看
  • 有云端版,所以手机上也能看实验
  • 适配框架很多,有接近30个,基本上主流的不主流的都覆盖了;因为是中国团队的关系,也适配了很多国产框架(LLaMA Factory、XTuner、ModelScope Swift等等)
  • 实验全流程记录,超参数记录,日志记录,硬件环境记录,GPU实时监控,Python库记录,一体化表格对比
  • 支持华为昇腾显卡,应该是这类工具里唯一一款能记录昇腾NPU的显存变化的
  • 支持多人团队使用

20

13

也就是说,swanlab并不单纯的是一款数据可视化工具,还有非常丰富的团队协作功能。

swanlab另外一大亮点的就是强大的兼容性,它能够和Jupyter、Pytorch、TensorFlow、Keras、HuggingFace Transformer、sfast.ai、LightGBM、XGBoost一起结合使用。

因此,它不仅可以给你带来时间和精力上的节省,还能够给你的结果带来质的改变。

训练过程例子

极简教程

1. 安装库

pip install swanlab

2. 创建账户

swanlab login

3. 初始化

import swanlab
swanlab.init(project="my-project")

4. 声明超参数

swanlab.config.dropout=0.2
swanlab.config.hidden_layer_size=128

5. 记录日志

for epoch in range(10):
	loss = 1 - 1/epoch
	swanlab.log({'epoch': epoch, 'loss': loss})

6.测试demo

import swanlab
import random

# 创建一个SwanLab项目
swanlab.init(
    # 设置项目名
    project="my-awesome-project",
  
    # 设置超参数
    config={
        "learning_rate": 0.02,
        "architecture": "CNN",
        "dataset": "CIFAR-100",
        "epochs": 10
    }
)

# 模拟一次训练
epochs = 10
offset = random.random() / 5
for epoch in range(2, epochs):
  acc = 1 - 2 ** -epoch - random.random() / epoch - offset
  loss = 2 ** -epoch + random.random() / epoch + offset

  # 记录训练指标
  swanlab.log({"acc": acc, "loss": loss})

# [可选] 完成训练,这在notebook环境中是必要的
swanlab.finish()

使用swanlab以后,log、日志和环境信息将会同步到cloud。

PyTorch应用SwanLab

我们以一个MNIST手写体识别任务为例,展示swanlab的用法。

安装必要的库:

torch
torchvision
swanlab

快速安装命令:

pip install torch torchvision swanlab

完整代码:

import os
import torch
from torch import nn, optim, utils
import torch.nn.functional as F
import torchvision
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import swanlab

# CNN网络构建
class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        # 1,28x28
        self.conv1 = nn.Conv2d(1, 10, 5)  # 10, 24x24
        self.conv2 = nn.Conv2d(10, 20, 3)  # 128, 10x10
        self.fc1 = nn.Linear(20 * 10 * 10, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        in_size = x.size(0)
        out = self.conv1(x)  # 24
        out = F.relu(out)
        out = F.max_pool2d(out, 2, 2)  # 12
        out = self.conv2(out)  # 10
        out = F.relu(out)
        out = out.view(in_size, -1)
        out = self.fc1(out)
        out = F.relu(out)
        out = self.fc2(out)
        out = F.log_softmax(out, dim=1)
        return out


# 捕获并可视化前20张图像
def log_images(loader, num_images=16):
    images_logged = 0
    logged_images = []
    for images, labels in loader:
        # images: batch of images, labels: batch of labels
        for i in range(images.shape[0]):
            if images_logged < num_images:
                # 使用swanlab.Image将图像转换为wandb可视化格式
                logged_images.append(swanlab.Image(images[i], caption=f"Label: {labels[i]}"))
                images_logged += 1
            else:
                break
        if images_logged >= num_images:
            break
    swanlab.log({"MNIST-Preview": logged_images})
  

def train(model, device, train_dataloader, optimizer, criterion, epoch, num_epochs):
    model.train()
    # 1. 循环调用train_dataloader,每次取出1个batch_size的图像和标签
    for iter, (inputs, labels) in enumerate(train_dataloader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        # 2. 传入到resnet18模型中得到预测结果
        outputs = model(inputs)
        # 3. 将结果和标签传入损失函数中计算交叉熵损失
        loss = criterion(outputs, labels)
        # 4. 根据损失计算反向传播
        loss.backward()
        # 5. 优化器执行模型参数更新
        optimizer.step()
        print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'.format(epoch, num_epochs, iter + 1, len(train_dataloader),
                                                                      loss.item()))
        # 6. 每20次迭代,用SwanLab记录一下loss的变化
        if iter % 20 == 0:
            swanlab.log({"train/loss": loss.item()})

def test(model, device, val_dataloader, epoch):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        # 1. 循环调用val_dataloader,每次取出1个batch_size的图像和标签
        for inputs, labels in val_dataloader:
            inputs, labels = inputs.to(device), labels.to(device)
            # 2. 传入到resnet18模型中得到预测结果
            outputs = model(inputs)
            # 3. 获得预测的数字
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            # 4. 计算与标签一致的预测结果的数量
            correct += (predicted == labels).sum().item()
  
        # 5. 得到最终的测试准确率
        accuracy = correct / total
        # 6. 用SwanLab记录一下准确率的变化
        swanlab.log({"val/accuracy": accuracy}, step=epoch)
  

if __name__ == "__main__":

    #检测是否支持mps
    try:
        use_mps = torch.backends.mps.is_available()
    except AttributeError:
        use_mps = False

    #检测是否支持cuda
    if torch.cuda.is_available():
        device = "cuda"
    elif use_mps:
        device = "mps"
    else:
        device = "cpu"

    # 初始化swanlab
    run = swanlab.init(
        project="MNIST-example",
        experiment_name="PlainCNN",
        config={
            "model": "ResNet18",
            "optim": "Adam",
            "lr": 1e-4,
            "batch_size": 256,
            "num_epochs": 10,
            "device": device,
        },
    )

    # 设置MNIST训练集和验证集
    dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
    train_dataset, val_dataset = utils.data.random_split(dataset, [55000, 5000])

    train_dataloader = utils.data.DataLoader(train_dataset, batch_size=run.config.batch_size, shuffle=True)
    val_dataloader = utils.data.DataLoader(val_dataset, batch_size=8, shuffle=False)
  
    # (可选)看一下数据集的前16张图像
    log_images(train_dataloader, 16)

    # 初始化模型
    model = ConvNet()
    model.to(torch.device(device))

    # 打印模型
    print(model)

    # 定义损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=run.config.lr)

    # 开始训练和测试循环
    for epoch in range(1, run.config.num_epochs+1):
        swanlab.log({"train/epoch": epoch}, step=epoch)
        train(model, device, train_dataloader, optimizer, criterion, epoch, run.config.num_epochs)
        if epoch % 2 == 0: 
            test(model, device, val_dataloader, epoch)

    # 保存模型
    # 如果不存在checkpoint文件夹,则自动创建一个
    if not os.path.exists("checkpoint"):
        os.makedirs("checkpoint")
    torch.save(model.state_dict(), 'checkpoint/latest_checkpoint.pth')

image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值