自然数分解求最大乘积

题目:

把正整数n分解成若干个互不相等的自然数的和,且使这些自然数的乘积最大。请你编写一个算法,由键盘输入n,求满足条件的分解方案。

输入: n (3<=n<=1000)

输出:乘积

分析:如果不探究解析方法而去盲目搜索所有分解方案的话,代价相当大。但其中是有数学规律滴…(这里让正整数是s,分解个数是n哈)
s = a 1 + a 2 + , ⋯   , + a n ( 1 ⩽ a 1 < a 2 < ⋯ < a n ) a 1 + a 2 2 ⩾ a 1 a 2 ( a 1 + a 2 + ⋯ + a n n ) ⩾ a 1 a 2 ⋯ a n n ,  即  ( s n ) n ⩾ a 1 a 2 ⋯ a n \begin{array}{c} s=a_{1}+a_{2}+, \cdots,+a_{n} \quad\left(1 \leqslant a_{1}<a_{2}<\cdots<a_{n}\right)\\\\ \frac{a_{1}+a_{2}}{2} \geqslant \sqrt{a_{1} a_{2}} \\\\ \left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \geqslant \sqrt[n]{a_{1}a_{2}\cdots a_{n}}, \text { 即 }\left(\frac{s}{n}\right)^{n} \geqslant a_{1}a_{2}\cdots a_{n} \end{array} s=a1+a2+,,+an(1a1<a2<<an)2a1+a2a1a2 (na1+a2++an)na1a2an ,  (ns)na1a2an

  1. a1>1
  2. 1<=ai+1-ai<=2,因为如果出现>2,可以将ai+1、ai改为ai+1-1、ai+1,使得到的乘积更大
  3. 最多只有一个i,使得ai+1-ai=2 ⬅为了让拆的数尽量多。。这里感觉不太严谨,跟数学建模出了个策略似的((谁来告诉我怎么证QAQ

总结策略如下:

把数按自然数顺序拆成2, 3, 4…an, an+1, an+1里是拆剩下的数。当an+1<=an时不合题意,要把它拆了分给前边的数。

  1. an+1=an时,因为an及之后的数每数加1还剩个1,只能把这个1分给an
  2. 1<an+1<an时,从an起向a1走,每个数挨个加1
  3. an+1=1时,只能加到ai

3,4这俩数比较特殊,如果必须拆的话只能拆成1+2、1+3。

太辣鸡了只会用python了

s=int(input())
if s==3 or s==4:
    result=s-1
else:
    divd=[]
    a=2
    while s>=a:
        s-=a
        divd.append(a)
        a+=1
    if s==1:
        divd[-1]+=1
    elif s==a-1:
        for i in range(a-2):#a-2:现在拆了n项(an+1不算进去)
            divd[i]+=1
        divd[-1]+=1
    else:
        i=a-3#第n项的下标
        while s>0:
            divd[i]+=1
            s-=1
            i-=1
    result=1
    for num in divd:
        result*=num

print('%d'%result)
### 回答1: 题目要将大于4的自然数n分解为若干个不相同的自然数的和,并使这些自然数乘积最大,输出最大乘积。例如,当n=10时,分解为2+3+5,最大乘积为30。 解题思路:根据题目要,我们可以尝试从最小的自然数开始考虑。当n为5时,只能分解为1+2+2,乘积为4;当n为6时,可分解为1+2+3,乘积为6;当n为7时,可分解为1+2+4,乘积为8;当n为8时,可分解为1+2+5,乘积为10;当n为9时,可分解为1+2+6,乘积为12;当n为10时,可分解为2+3+5,乘积为30,此时乘积最大。 因此,我们可以用循环依次尝试每个自然数,直到找到最大乘积为止。具体实现可以参考下面的代码: n = 10 # 输入的自然数 max_product = 0 # 初始化乘积为0 for i in range(2, n-1): for j in range(i+1, n): k = n - i - j if k <= j: break product = i * j * k if product > max_product: max_product = product factors = [i, j, k] print(max_product) # 输出最大乘积 print(factors) # 输出对应的分解因子 ### 回答2: 对于这道问题,我们需要分析自然数的性质,以及如何将它们拆分最大乘积。 首先,我们需要找到一些规律。我们可以尝试将一些较小的数进行拆分,例如6、7、8、9等。当拆分出的自然数个数相同时,它们的乘积会有什么规律呢? 当拆分6时,我们可以得到1、2、3,它们的乘积为6。 当拆分7时,我们可以得到1、2、4,它们的乘积为8。 当拆分8时,我们可以得到1、2、3、2,它们的乘积为12。 当拆分9时,我们可以得到1、2、3、3,它们的乘积为18。 通过以上的例子,我们可以发现,拆分出的数中,越多的1对乘积贡献越小,越多的大数对乘积贡献越大。因此我们应该尽可能地拆分成2、3、4、5等较大的数。 我们可以将n拆分成若干个数的和,假设这些数分别为a1、a2、a3......an。我们需要使它们的积最大,因此我们可以将它们写成以下的形式: n = a1 + a2 + a3 +......+an ln(n) = ln(a1) + ln(a2) + ln(a3) +......+ln(an) 对于ln(x)函数,它的图像是单调递增的,因此我们可以通过对ln(x)函数进行优化,来得到最大乘积的答案。 假设原问题的解为M(n),我们可以得到以下的式子: M(n) = max{i×M(n-i)} (2≤i≤n/2) 这个式子的含义是:对于n,我们枚举拆分出来的第一个数i,然后将n-i拆成若干个自然数,再计算它们的乘积,最后将它们的乘积乘上i,得到总的乘积,我们需要取所有方案中的最大值。 同时,我们需要注意到一些边界条件,例如当n=2、n=3、n=4时,它们所对应的最大乘积分别为1、2、4,因为它们只能拆分成1、1、1......、1,2、1、1......、1、2、2、1、......、2、2、......、2、2、1。因此在程序实现中,需要判断n的大小,以处理这些边界情况。 ### 回答3: 这是一道比较经典的数学问题。要将正整数n分解为若干个互不相同的自然数之和,且使得乘积最大。我们可以根据贪心算法来解决这个问题。 首先,我们使用贪心思想让这些自然数尽可能接近。这意味着我们将n分解为连续的自然数之和。例如,将10分解为1+2+3+4,乘积为24,比分解为2+3+5的30要小。这是因为连续自然数乘积的增长速度比非连续自然数快。 我们来证明一下。 假设我们将n分解为m个自然数之和,分别为a1,a2,...,am。则根据乘积的定义可得: P = a1 * a2 * ... * am 我们认为这些自然数尽量接近,也就是说它们之间的差异尽量小。因此可以将它们表示为: a1 = x a2 = x + 1 a3 = x + 2 ... am = x + m - 1 将以上式子代入到乘积式子中,可得: P = (x)(x + 1)(x + 2)...(x + m - 1) 将乘积式子展开,得到: P = x^m + (mC1)x^(m-1) + (mC2)x^(m-2) + ... + (mCm-1)x + mCm 其中,mCk表示从m个自然数中选出k个自然数的组合数。 以上式子右侧的各项都是常数,m是固定的。因此,我们只需要让乘积式子左侧的x^m尽可能大,就能使乘积最大化。 现在来看一下x的取值。由于a1-a2 = 1,a2-a3 = 1,...,am-1-am = 1,因此有: a1 + am = 2x + m - 1 代入n = a1 + a2 + ... + am,得到: n = mx + m(m - 1) / 2 将前面的x^m展开式子代入,得到: P = (n / m)^m * (1 / m^m) * [(m - 1)!]^2 / [2^(m - 2) * (m - 1)^(m - 1)] 观察上式可以发现,当m增大时,(n / m)^m 趋近于常数,因此P的增长主要取决于 [(m - 1)!]^2 / [2^(m - 2) * (m - 1)^(m - 1)]。 这里可以使用斯特林公式,得到: [(m - 1)!]^2 / (m - 1)^(m - 1) = √(2π(m - 1)) * [(m - 1) / e]^(m - 1) 又因为当m增大时,上式趋近于 √(2πm) * (m / e)^m,因此我们只需要让m尽可能大即可。 因此,我们的策略是,将n分解为2个连续自然数之和。如果n是奇数,则将n分解为(n-1)/2 + (n+1)/2两个数之和,如果n是偶数,则将n分解为n/2 + n/2这两个数之和。 这个策略的正确性是显然的,因为如果n分解为更多的自然数之和,那么必然存在两个自然数之间的差大于1,这样就能找到一种不同的分解方式,使得乘积更大。因此,只需要将n分解为2个连续自然数之和即可。 最后,我们还需要注意,当n <= 4时,题目无解。因为无论如何分解,四个数(甚至更多的数)的积都小于等于n。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值