一个用于实证测试新终端用户信息系统的技术接受模型:理论和结果
Fred D. Davis
1985年12月20日提交给麻省理工学院斯隆管理学院用以部分满足管理学博士学位
本研究的目的是发展和检验一个理论模型,以探讨系统特性对用户接受以计算机为基础的信息系统的影响。该模型被称为技术接受模型(TAM),在开发过程中考虑了两个主要目标。首先,它应该提高我们对用户接受过程的理解,为信息系统的成功设计和实施提供新的理论见解。第二,TAM应为实际的"用户接受测试"方法提供理论基础,使系统设计者和实现者能够在新系统实施之前对其进行评估。在用户接受度测试中应用所提出的模型将涉及向潜在用户演示系统原型,并衡量他们使用可选系统的动机。这种用户接受测试可以提供关于拟议系统在开发初期取得成功的相对可能性的有用信息,而这种信息在开发初期具有最大的价值。基于这些目标,指导本研究的关键问题包括:
(1)在组织环境中,在系统特征和终端用户实际使用计算机系统之间起中介作用的主要动机变量是什么?
(2)这些变量之间、与系统特征和用户行为之间有何因果关系?
(3)如何在组织实施之前测量用户动机,以便评估用户接受拟议的新系统的可能性?
要使用户接受测试可行,相关的用户动机模型必须有效。目前的研究采取了几个步骤来建立一个有效的用户动机模型,并旨在为未来的研究提供基础。本论文采取的研究步骤包括:(1)选择一个相当普遍的、完善的心理学人类行为理论模型作为范式,在该范式中制定拟议的技术接受模型;(2)对这一范式进行了几处调整,以使其适用于目前的情况;(2)回顾了管理信息系统和人类因素领域的已发表文献,以证明所提出模型的各种要素存在实证支持,同时该模型超越了现有的理论规范,并以累积的方式建立和整合以前的研究;(4) 开发并预测试了模型心理变量的量表;(5) 对 100 个组织用户进行了实地调查,以验证模型变量的量表,并测试模型的结构,以及 (6) 涉及 40 个 MBA 学生主体的两个商业图形系统的实验室用户接受实验被执行,以进一步测试所提出模型的结构,探索在用户接受测试中用录像带演示代替动手交互的影响,以评估正在测试的特定图形系统,并测试对所提出模型的几个理论扩展和改进。
论文导师:John C.Henderson
职称:管理科学副教授
目录
本研究的目的是发展并检验一个理论模型,以探讨系统特性对使用者接受电脑信息系统的影响。该模型被称为技术接受模型(TAM),目前正在开发中,它考虑到两个主要目标。首先,它应该提高我们对用户接受过程的理解,为信息系统的成功设计和实施提供新的理论见解。第二,TAM应该为实际的“用户接受测试”方法提供理论基础,使系统设计者和实现者能够在新系统实施之前对其进行评估。在用户接受度测试中应用所提出的模型需要向潜在用户演示系统原型,并测量他们使用可选系统的动机。这种用户接受测试可以提供关于拟议系统在开发初期取得成功的相对可能性的有用信息,而这种信息在开发初期具有最大的价值。(Ginzberg,1981)。基于这些目标,指导本研究的关键问题包括:
(1)在组织环境中,在系统特征和终端用户实际使用计算机系统之间起中介作用的主要动机变量是什么?
(2)这些变量之间、与系统特征和用户行为之间有何因果关系?
(3)如何在组织实施之前测量用户动机,以便评估用户接受拟议的新系统的可能性? 管理信息系统(MIS)研究的一个长期目标是提高我们对影响组织中基于计算机的系统成功开发和实施的因素的理解(例如,Keen,1980)。尽管对于如何定义MIS的成功一直存在争议,但有三个变量一直作为MIS成功的标准:实际系统使用情况、用户态度和绩效影响(例如,Alavi & Henderson, 1981;Bailey & Pearson, 1983;Ginzberg, 1981;Ives, Olson & Baroudi, 1983;Lucas, 1975;Swanson, 1974;Zmud, 1979)。大量的MIS研究致力于开发度量工具,使MIS从业者能够评估和监测其组织中的MIS成功标准(例如,Bailey & Pearson, 1983;Schultz & Slevin, 1975)。此外,管理信息系统研究人员试图让从业者更好地理解他们如何通过控制各种策略和决策来影响这些“成功变量”,包括:(1)系统特性的选择(如Lucas & Neilson,1980);(2)开发过程的选择(如Alavi,1984);(3)实施战略的选择(例如,Alavi & Henderson,1981)和(4)所提供支助服务的性质(例如,Rockart & Flannery,1983)。在很大程度上,MIS研究关注于理论和技术的发展,这些理论和技术允许实践者更好地测量和预测在他们控制下的决策变量如何影响MIS的成功。在这一广泛的背景下,本研究关注的是开发技术,赋能从业人员,评估一类管理可控变量,即系统特性,对特定用户群体成员接受和使用新的终端用户信息系统的动机的影响。
目前的研究主要集中在被称为终端用户系统的一类系统上,这里定义为由组织成员自行决定直接使用以支持其工作活动的系统。终端用户系统代表了信息系统中越来越重要的一类。最近几年,所有组织级别的终端用户对信息系统的直接使用迅速扩大,预计将在1990年代继续强劲增长(Benjamin,1982;Rockart & Flannery,1983;Rockart & Treacy,1982)。例如,1983年美国办公自动化系统市场约为113亿美元,预计到1988年将增长到366亿美元(Weizer & Jackson, 1983)。个人计算在20世纪80年代初的激增表明了终端用户计算的快速增长。
计算机技术的进步显然是推动这一增长的主要力量,使强大的终端用户系统在经济上具有吸引力。再加上系统设计师越来越强调将原始计算能力转化为适合终端用户需求的系统(Gould & Lewis,1983;Norman,1983)。在试图设计更成功的系统时,开发人员发现使用实际的潜在用户测试系统原型是评估和改进拟议设计的有效方法(例如,Bewley等人,1983年;Card,English & Burr,1978年;Gould,Conti & Hovanyecz,1983年)。虽然现有的原型测试方法被认为是有价值的(Gould & Lewis,1985),但它们在测量用户对原型系统响应的技术上存在局限性。也就是说,目前的做法一般不评估用户是否会使用新系统,而是侧重于将客观的绩效标准作为选择设计替代方案的基础(见下文第3章的回顾)。由于终端用户系统主要由用户自行决定使用(DeSanctis,1983年;ives,Olson & Baroudi,1983年;Robey,1979年),许多系统设计情况下的一个重要评估标准是所考虑的系统是否会被目标用户群使用。虽然实际组织绩效增长是使用新信息系统所预期的结果,但如果用户未能采用新系统,则这些收益将无法获得。本研究主要关注设计特性与系统使用之间的关系,暂时搁置使用绩效问题。信息系统的实际使用或不使用是信息系统设计和选择中的一个重要和被忽视的问题。
如上所述,所提出的模型旨在描述在系统特性和用户行为之间起中介作用的动机过程,如图1.1所示。系统特性和功能在很大程度上由MIS实践者控制:系统设计人员、开发人员、选择人员和管理人员。无论一个新系统是在内部开发供内部使用,还是从外部供应商购买,或在内部设计供外部销售,从业人员对目标系统中包括的功能和能力都有重大影响。系统的特性反过来又影响目标用户实际使用系统的程度。本研究认为,在使用者方面存在着一种中介性的动机反应。也就是说,系统的特性影响用户使用系统的动机,而用户使用系统的动机反过来又影响他们自己实际使用或不使用系统。此外,本研究旨在建立一个将系统特性与实际使用联系起来的激励变量模型,并为这些变量制定测量方法。这些措施使得有可能对所建议的模型进行实证测试,并可能提供在用户接受测试中应用所提出模型所需的工具。
要确定特性-使用关系的动机模型的价值,可以参考信息系统从业者在做出关于系统特性的决策时通常需要投入的大量资源。这些资源面临风险,因为目标用户可能不采用新系统。为了直接评估他们的决定对实际系统使用的影响,实践者需要在组织环境中实际执行各种系统替代方案。事实上,这通常是在有限的规模上使用“试验台”来评估系统设计的用户可接受性(例如,Johanson&Baker,1984)。然而,实际的组织实施有几个缺点。为了让受试者将新工具融入他们的工作习惯,可能需要一定的时间(可能需要几周的时间)。这对组织是破坏性的,因为如果在评估之后,新系统应该从测试用户那里撤回,而他们可能已经变得有点依赖这些系统。此外,这种方法要求测试系统在一个更多的“成品”形式,而不是典型的系统在原型阶段。目前的研究认为,潜在的用户形成了动机。此外,这种方法要求测试系统的形式比原型阶段的典型系统更“成品化”。
目前的研究认为,潜在用户在接触新系统后会相当迅速地形成动机倾向,并且远远早于这种倾向的可观察到的行为后果。也就是说,我们假设在简短的测试会话中向潜在用户演示新系统及其能力,使他们能够对系统对其工作的适用性形成判断,并形成普遍的动机反应。如果是真的,那么在相对短暂地接触测试系统后,可以从用户那里获得用户动机的测量结果。这将允许从业人员在开发过程的早期就收集关于各种替代系统的相对可接受性的信息,而不需要破坏性的试验台实施过程。
按照设想,用户接受度测试过程将包括:在实验室环境中向预定用户群体的代表简要演示一套替代新系统(使用动手互动和可能的替代媒体,如录像带来演示系统),并衡量他们在工作中使用这些系统的动机。根据这些测量结果,可以预测用户对系统的可能接受程度。
如果用户接受测试在解释用户接受方面证明是成功的,它将为系统设计者和实现者提供有价值的信息。设计师将能够更好地评估系统开发过程早期的设计思想,并在替代方法中做出明智的选择。这将使他们能够将开发资源引向高优先级系统,并降低设计失败的风险。系统的组织实施者将能够系统地让用户参与选择要实施的系统的过程,并尽早发现实施问题,以采取纠正行动或减少重大损失。
为了使用户接受测试可行,相关的用户动机模型必须有效。本研究为建立一个有效的用户动机模型迈出了最先的几步,并为这一目标的研究指明了方向:(1)作为起点,选择了一个相当普遍的、成熟的心理学人类行为理论模型Fishbein(1967;Fishbein & Ajzen,1975)模型作为建立技术接受模型的基础(见下文第2章);(2)对Fishbein模型进行了几处修改,使其适用于目前的情况(见下文第2章);(3)回顾了管理信息系统和人的因素领域的已发表文献,以证明对所提出的模型的各种要素存在经验支持,同时该模型超越了现有的理论规范,以累积的方式建立和整合了以前的研究(Keen,1980)(见下文第3章);(4)对模型的心理变量进行了测量和预检验(见下文第4章);(5)对100个组织用户进行了实地调查,以验证模型变量的量表,并测试模型的结构(见下文第4章);(6)对两个商业图形系统进行了实验室用户接受实验,涉及40名MBA学生,以进一步测试拟议模型的结构。测试在用户接受测试中用录像带演示代替动手交互的影响,评估正在测试的特定图形系统,并测试对拟议模型的几个理论扩展和改进(见下文第5章)。
本章的目的是明确提出的技术接受模型(TAM),并对其理论基础进行分析。我们首先概述FishbeIn模型,它为TAM提供了大部分理论基础。对于为什么Fishbein模型提供了一个合适的理论范式,从研究目标的角度提出了论点。接下来,对TAM进行了详细的说明,随后详细讨论了其发展过程中所考虑的理论问题,包括其与Fishbein模型的关系。
Fishbein模型概述
Fishbein(1967)模型被选为技术接受模型的参考范式。该模型最初由Fishbein(1967)详述,并由Fishbein和Ajzen(1975)广泛分析和精炼,使用三个方程来定义。第一个方程式表明,一个人执行某一特定行为的意向(Blact)是他或她公开表现该行为(B)的直接因果决定因素,并且个人的意向是由他或她的行为态度(Aact)以及对个人重要的人的感知社会影响(SNact)共同决定:
行为意向(BI)通常被定义为个人对他或她将执行特定行为的主观概率(例如,Fishbein & Ajzen, 1975, p.288)。态度是指个体对目标行为的影响程度的评估(例如,Fishbein & Ajzen,1975,p.216)。主观规范是指“一个人认为大多数对他很重要的人认为他应该或不应该做出有争议的行为”(Fishbein & Ajzen, 1975, p.302)。重要性权重是通过多元回归来估计的,以反映特定情况下态度和规范成分的相对因果影响,并预计在不同情况下会有所不同。
第二个等式意味着,个人对某一特定行为的态度是执行该行为的感知结果乘以对这些结果的评估的函数:
这个方程是以Fishbein(1963)提出的态度的期望-价值模型为基础的,该模型是建立在Rosenberg(1956)的早期工作之上的。信念被定义为人的主观概率,执行目标行为将导致显著的后果i。评估是指对结果的“一种内隐的评估反应”(Fishbein & Ajzen,1975,p.29)。Fishbein和Ajzen(1975,p.216)将信念和态度之间的紧密关系理论化:“在我们的概念框架中,当一个人对一个对象形成信念时,他自动地同时获得对该对象的态度。” 方程2代表了态度形成和改变的信息处理观点,它认为态度只有通过个人信念结构的改变才会改变(例如,Ajzen和Fishbein,p.253)。
第三个等式规定,个人的主观规范是“特定参照个人或群体的感知期望,以及个人遵守这些期望的动机”的函数(Fishbein & Ajzen, 1975, p.302):
这是模型中最不被理解的部分,因为“很少有研究...处理规范信念的形成”(Fishbein & Ajzen, 1975, p.304)。人们经常认为,规范性信念可以被纳入预期-价值态度成分,因为主体可能会将遵从一个重要指称者的意愿视为目标行为的显著结果。Fishbein & Ajzen(1975,p.304)虽然同意某些规范性信念可能确实属于态度成分,但声称“保持对行为后果的信念和对相关参照者期望的信念之间的区分是有用的。” 此外,对该模型的实证研究表明,规范成分往往对意向和态度有显著影响(Ajzen & Fishbein,1980)。
Fishbein模型没有具体说明哪些信念(即感知的结果,见上面的等式2)对给定的语境是有效的。相反,使用该模型的研究人员必须首先确定他们将处理的情况中所包含的信念。Fishbein和Ajzen(1975,p.218)指出,“虽然一个人可能对一个给定的对象持有相对较多的信念,但在任何给定的时刻,似乎只有相对较少的信念作为他的态度的决定因素。” 那些对一个人的态度产生影响的信念被称为显著信念。Fishbein和Ajzen(1975,p.218)建议用自由反应的方法来激发显著的信念,其中要求受试者列出执行目标行为的后果。同时,他们指出:“然而,有可能的是,对于一个给定的个人来说,只有前两三个信念是显著的,超过这一点的个别信念不是他的态度的主要决定因素(即不是显著的)。不幸的是,不可能确定一个人在什么时候开始产生非显著的信念(Fishbein & Ajzen, 1975, p.218)。” 作为经验法则,Fishbein和Ajzen(1975,p.218)建议得出五到九个信念,因为:“关于注意广度、忧虑和信息处理的研究表明,一个人一次只能处理五到九个信息”(例如,G.A.Miller,1956;Woodworth和Schlosberg,1954;Mandler,1967)。由于显著信念的集合会因个体而异,他们建议对群体使用模态显著信念,这是从群体的代表性样本中最常引出的信念中获得的。对于显著参照的引出,建议采用类似的引出程序。
Fishbein范式的一个重要特征是这样一个论点,即为了获得行为因果决定因素的正确说明,模型的心理变量应该在与要解释的行为标准相对应的特定水平上定义和测量。也就是说,模型的变量应该在目标、行动、语境和时间框架元素方面以与目标行为平行的方式措辞(Fishbein & Ajzen,1975,p.369;Ajzen & Fishbein,1980,p.34)。例如,Ajzen和Fishbein(1980,p. 43)指出:“想象一下,我们想预测,对于样本中的每个受访者,他或她是否会购买一台彩色电视机。进一步,假设我们决定等一年后再衡量行为是否已经发生。可以看出,该标准指定了一个动作(购买)、一个目标类别(彩色电视机)和一个时间段(所涉年份),但它没有指定语境元素。唯一与这一行为标准完全一致的衡量意向的标准是衡量一个人“在一年内购买一台彩色电视机”的意向。如果我们决定在六个月内回来记录行为,相应的意向将是‘在未来六个月内购买一台彩色电视机’的意向。“类似地,Fishbein和Ajzen(1975)认为,只有当这些要素与行为标准特定一致时,模型所规定的信念、评估、态度、主观规范、规范性信念和遵守动机之间的关系才会出现。
有必要专门就个人"对客体的态度"进行简短的讨论。如果我们使用Fishbein框架来建模一个人对目标对象的行为的决定因素,那么要测量的适当态度是这个人对执行与对象有关的行为的态度(Aact),而不是他们对对象本身的态度(A0)。Aact在动作元素方面与行为标准的特定性相对应,而A0则不是(我们也应该同样地确保语境和时间元素的对应)。Fishbein和Ajzen(1974)证明,尽管A0与态度对象的一般行为模式密切相关,但它在预测涉及对象的特定行为标准方面远不如Aact。Peak(1955)、Rosenberg(1956)和Fishbein(1963)的期望-价值态度模型是基于对象的态度模型,而不是基于行为的态度模型。因此,所处理的信念结构与对象的感知属性有关,而不是预期的行为后果(例如,Fishbein,1963;Fishbein & Ajzen,1975)。由于先前的许多态度研究都涉及A0和态度对象感知属性的测量,因此常常无法确定被测量的“态度”与特定行为之间的明确联系(参见Wicker,1969)。Fishbein范式的一个主要贡献是解决不一致的发现,因为这种缺乏对应性是错误的(例如,Ajzen & Fishbein,1977)。Fishbein模型将A0视为一个外部变量,如上所述,它仅通过对行为后果信念、后果评估、规范信念、服从动机和重要性权重的影响来对意向施加影响,(Fisnbein & Ajzen, 1975, p.315-316;Ajzen & Fishbein, 1980, p.84)。
当被测量的意向在特异性上不能与目标行为对应时,它与行为的因果关系就会减弱,从而导致预测能力下降。 除了在特异性水平上的对应,Fishbein和Ajzen(1975,p.370-71)讨论了意向变量预测行为的能力会降低的另外两个条件。 首先,随着测量一个人的意向和观察他们的行为之间的时间增加,他们的意向改变的可能性增加,降低了最初意向的总体预测性。 其次,如果行为标准不在行为者的意志控制之下,他们执行意向的能力降低了,就转化为行为预测性降低了。 在个人缺乏能力或资源来实施一种预期行为的情况下,意志控制的缺乏可能会出现。
Fishbein模型声称,外部变量,如行为目标的特征,只能通过影响个人的信念、评估、规范信念、服从动机或态度和主观规范成分的重要性权重来间接影响行为意向(Fishbein & Ajzen, p.307)。外部变量包括模型中没有明确表示的所有变量,包括行为者的人口学或个性特征、所考虑的特定行为的性质、参照者的特征、先前的行为和说服性交流。Fishbein和Ajzen(1975,p.387-509)讨论的各种行为改变策略建立在这样一个原则上:个人的意向可能主要通过影响他或她的信念而受到影响。
Fishbein模型作为目前研究的范例有几个吸引人的特点。Fishbein模型的一个主要优点是,它整合了许多以前互不相干的理论,这些理论涉及信念、态度、意向和行为之间的关系。Fishbein模型是对Dulaney(1961)命题控制理论的改编,该理论是在关于言语条件化和概念获得的实验室实验中发展起来的。Fishbein和Ajzen(1975)详细分析了Fishbein模型与现有的主要理论的关系,认为Fishbein公式与其他态度模型非常相似,从以下角度来看:学习理论(例如,Doob,1947;Staats & Staats,1958);预期-价值理论(如Atkinson,1957;Edwards,1954;Rotter,1954, Tolman,1932);一致性理论(例如,Festinger,1957;Heider,1946;Rosenberg,1960)和归因理论(例如Heider,1958;Jones & Davis,1965;Kelley,1967)。Fishbein模型在结构上也类似于其他主要的动机理论(例如,参见Vroom, 1964;Weiner, 1985)。此外,与许多其他理论观点相比,Fishbein模型在变量的定义、操作和因果关系方面非常明确。已经积累了大量的实证结果,这些结果通常为模型规范提供支持(Ajzen & Fishbein,1980;Fishbein & Ajzen,1975;Ryan & Bonfield,1975)。Fishbein模型被广泛应用于各种学科领域的应用研究(Brinberg & Durand, 1983;Davidson & Morrison, 1983;Hom, Katerberg & Hulin, 1979;Jaccard & Davidson, 1972;Manstead, Proffitt & Smart, 1983), 同时激发了大量的理论研究,旨在理解模型的局限性,检验关键假设,并分析各种改进和扩展(Bagozzi, 1981, 1982, 1984;Bentler & Speckart, 1979;Ryan, 1982;Saltzer, 1981;Warshaw, 1980a, 1980b;Warshaw & Davis, 1984, 1985, 在出版中;Warshaw, Sheppard & Hartwick, 在出版中)。
Fishbein模型似乎很适合于目前的研究目标。它提供了一个关于外部刺激和由此产生的行为之间的动机联系的有根据的理论,外部刺激是系统特征的一个例子。此外,该模型还为在这些动机现象的行为表现之前观察这些动机现象提供了制定操作措施的标准。
Fishbein模型的一个更广泛的优点是,它能够整合心理学的许多理论观点,这些观点以前被用于MIS接受研究。此外,在MIS中使用Fishbein模型提供了利用参考学科中新的理论发展和扩展的机会。
拟议的技术接受模型如图1所示,箭头表示因果关系。替代系统使用一组二进制“设计特性”变量来表示。根据该模型,潜在用户对使用给定系统的总体态度被假设为他是否实际使用该系统的主要决定因素。
反过来,使用的态度是两个主要信念的函数:感知有用性和感知易用性。感知的易用性对感知的有用性有因果关系。设计特征直接影响感知的有用性和感知的易用性。由于设计特征属于Fishbein范式中的外部变量的范畴(如前面所讨论的),所以它们并没有被理论化为对态度或行为有任何直接影响,相反,它们只是通过感知有用性和感知易用性间接地影响这些变量。遵循Fishbein模型,模型之间的关系被理论化为线性关系。该模型可用以下四个方程表示:
使用是指个人在其工作环境中对给定系统的实际直接使用。因此,使用是一个重复的、多行为的行为准则(例如,Fishbein & Ajzen,1975,p.353),它对目标(特定的系统)、动作(实际的直接使用)和语境(在人的工作中)是特定的,而对时间框架是非特定的。态度是指个体与在工作中使用目标系统相关联的评估影响程度(例如,Fishbein & Ajzen,1975,p.216)。因此,态度的定义和测量与Ajzen和Fishbein(1977)所推荐的行为标准的定义在特殊性上是一致的。感知有用性的定义是“个人相信使用特定系统会提高他或她工作绩效的程度”。感知易用性的定义是“个人认为使用特定系统将无需体力和脑力的程度”。
假设易用性对易用性有显著的直接影响,因为在其他条件相同的情况下,易用性的系统会提高用户的工作绩效(即更大的有用性)。假定用户全部工作内容的一个重要部分用于实际使用系统本身,如果用户通过更容易使用而在他或她的部分工作中变得更有生产力,那么他或她就会在总体上变得更有生产力。因此,系统的特性可能通过影响易用性而间接影响有用性。
本节的目的是讨论索提出的模型所依据的各种理论。特别关注技术接受模型和Fishbein模型之间的关系,后者为本研究提供了重要的概念基础。上面指定的技术接受模型在几个方面不同于标准的FishBein模型。信念(感知的结果)被指定、建模和测量的方式不同于推荐的Fishbein方法。此外,主观规范和行为意向变量,虽然是Fishbein范式的核心要素,但从目前的模型中被省略了。讨论了这些改变的性质和基本原理。
信念总和。回想一下,在Fishbein范式中,信念和态度之间的关系是用以下等式建模的:
信念和态度之间的关系通常通过计算上述等式右侧的总和并计算其与Aact的相关性来评估。这相当于下列回归方程的标准化回归系数(Pindyck & Rubenfeld,1981):
在这种方法中,信念评估项的总和在概念上被视为一个独立变量,回归(或相关)系数被解释为信念对态度的整体影响。
相反,目前的模型在Aact的回归方程中分别表示每个信念(见上面的方程3)。使用多元回归对信念结构进行分解建模,使人们能够比较不同信念在决定使用态度方面的相对影响。回归长期以来一直以这种方式在各种理论领域中被用于建模过程,受试者在形成评估性判断时用于集成不同的信息元素(参见Slovic & Lichtenstein,1971)。基于回归的模型似乎能够准确地模拟通过细粒度协议分析观察到的判断过程中使用的线索的重要性,即使当被试使用高度非补偿性的判断过程时(Einhorn,Kleinmuntz & Kleinmutz,1979;另见Johnson和Meyer,1984)。尽管Fishbein和Ajzen(1975,p.158-150)承认多元回归模型在建立信念对其他信念的影响方面的优点,但他们并没有用它来分析信念与态度之间的关系。
在讨论个人信念项i的相对重要性时,Fishbein和Ajzer(1975,p.241)承认他们:“基本上假定权重是1.0,因此可以忽略。” 他们认为,信念和态度之间的多重相关性的大小通常不会在增加重要性权重时得到改善。然而,由于线性模型的稳健特性,在大多数预期-价值语境中(即相关的自变量与因变量单调相关),单位权重能够提供准确的预测,尽管与真正的回归参数有很大的偏差(Dawes & Corrigan,1974;Einhorn & Hogarth,1975;Wainer,1976)。因此,基于观察到解释的方差大致相同,得出单位权重代表实际结构参数的良好近似值的结论是错误的。由于我们关心的是准确估计感知有用性和感知易用性本身的影响,除了Aact方程的多重相关性之外,更合适的是单独估计每个信念的回归系数,而不是赋予它们单位权重。虽然我们不期望解释方差的总体比例显著超过单位加权模型,但估计的回归权重是诊断解释信息的重要来源,使研究者能够衡量感知有用性和易用性在确定态度和行为方面的相对影响。
除了获得易用性和有用性对态度的相对影响的信息外,在Aact方程(方程3)中分别表示信念与易用性和有用性在方程1和2中分别作为独立的因变量是一致的。通过在等式1和2中分别表示信念,我们能够评估系统特性对每个信念的影响,并评估易用性对有用性的影响。Fishbein模型的相加信念结构并不能为评估设计特征对个人信念的影响提供适当的基础,而且很可能会实质上扭曲实际的潜在效果。例如,在一个设计特征增加有用性的同时降低易用性的情况下,相互抵消的感知效果可能会相互抵消,导致不正确的无差异结论。在设计特征对总和信念结构有显著影响的情况下,不可能将影响归因于单个信念或构成总和的信念的特定组合。
一些研究人员使用“自我报告”的重要性权重来代替估计的回归系数。市场研究人员特别倾向于在多属性态度模型中使用自我报告的重要性权重(例如,参见Wilkie和Pessemier,1973;Ryan和Bonfield,1975;以及Shocker和Srinivasan,1979)。然而,基于对一些市场研究的回顾,Bass & Wilkie(1973)得出结论,自我报告的重要性权重很少增加显著的解释力,而且经常大大降低预测。尽管这个问题仍有争议,但对这一现象的一个潜在解释是人们经常表达的观点,即人们似乎缺乏自我洞察力,认为他们在形成判断时实际上重视各种线索(Einhorn & Hogarth, 1981;Nisbett & Wilson, 1977;Slovic & Lichtenstein, 1971)。需要指出的是,研究者通常将自我报告的重要性权重与Fishbein模型的信念评估项(ei)区分开来(例如,Fishbein & Ajzen, 1975, p.228;Ryan & Bonfield, 1975, p.120)。因此,使用自我报告的重要性权重似乎是不合理的。
总之,在等式1-3中单独表示信念比像Fishbein模型的应用程序中通常所做的那样将信念被聚合处理提供关于系统特性影响用户行为的过程的更多的诊断和解释性信息。此外,在等式3中,使用回归对易于使用和有用性的重要性权重的估计相对于使用单位权重或自报告权重具有显著的优势。
信念的评估。Fishbein提出的预期-价值态度模型与上面使用的态度方程(等式3)之间的另一个关键区别是,在Fishbein模型中,每个信念乘以其相应的评估项,而在本模型中不使用评估项。研究人员争辩说,在回归或相关分析中使用这样一个乘法项,假设乘法项是在测量的比率水平上缩放的(Bagozzi,1984;Ryan & Bonfield,1975;Schmidt,1973)。由于用于测量Fishbein模型构造的类型的测量通常是区间缩放的,这种假设是站不住脚的,允许的线性变换将“改变乘积项与准则的关系……例如,仅仅通过对乘积项中的一个变量的测量增加一个常数,就可以使正相关为零或负(Bag Ozzi,1984,p.296)。” 由于在一个区间里没有固定的零点,这就使得乘积项的大小无法解释。
为了避免这一问题,Bagozzi(1984)使用分层回归估计信念和评估的乘积对态度的影响,其中乘积每个项的主要影响与乘积项本身一起进入回归。利用这种方法,乘积项的估计系数在信念和评估的线性变换下是不变的。当Bagozzi(1981)将这种分析应用于他的献血数据(例如,Bagozzi,1982)时,他没有发现交互作用项的显著影响,并得出结论:“那么,没有证据表明信念时间评估的总和在这种情况下是乘法结合的。” Fishbein和Ajzen(1975,p.227)认为,一些研究表明,“通过考虑信念强度和对相关属性的评估(即来自E Biei)可以比使用信念之和(Σbi)或评估结果之和(Σei)更准确地估计态度...当e要么全是正的,要么全是负的时,会出现一个例外。在这种情况下,仅Σbi就倾向于与态度高度相关。” 然而,任何一组显著信念都可以通过颠倒负值信念的数据编码方案而被拉成“所有正”信念。
因此,Fishbein和Ajzen的观察认为,只有当信念集包含正负验证信念的混合时,通过关联评估来乘以信念才会提高预测性,这表明评估项可以简单地充当反向负信念编码的机制,并且首先反向数据编码方案可以消除对评估项的需要。然而,在Loth Bagozzi(1982)的献血模型和目前的情况下,被建模的信念在评估取向方面是相同的,即Bagozzi的所有信念都是负价值的,而感知有用性和感知易用性都是正价值的。因此,即使根据Fishbein和Ajzen的逻辑,我们也不会期望评估术语有一个调节作用。考虑到信念评估项不能具有使其与信念相乘所需的比率尺度性质所带来的缺点,以及在改进解释方面明显缺乏优势,决定从本模型中省略它们。
信念之间的关系。目前的模型假设了感知易用性和感知有用性之间的因果关系。然而,Fishbein模型并没有明确地表示信念之间的关系;相反,正如前面所讨论的那样,信念(时间评估)是按相等的单位权重计算的,并加在一起,而不考虑它们之间可能存在的关系。具有讽刺意味的是,Fishbein和Ajzen(1975)在他们关于Belidf形成过程的理论化中非常强调信念之间的关系。Fishbein和Ajzen区分了基于可直接观察的对象或事件形成的“描述性信念”和超越可直接观察的现象的“推论性信念”。从这个角度来看,易用性在很大程度上可以被视为用户接受测试背景下的描述性信念,它是基于受试者对目标系统的直接经验而形成的。一些推理过程可能会影响易用性,因为受试者可能不得不在短时间的辅导之外进行推测,以预测他们对目标系统的终端掌握,同时考虑到他们自己的能力和过去的经验。相比之下,感知有用性在本质上被认为更具有推论性,要求受试者在没有在工作中使用该系统的直接经验的情况下,估计该系统对其工作绩效的影响。
Fishbein和Ajzen(1975,Ch.5)讨论了关于推理信念形成的各种理论模型,这些模型涉及信念之间的关系,包括描述性信念对推理信念的影响。它们涵盖了几个理论,包括:印象形成(Asch,1946)、线索利用(Slovic & Lichtenstein,1971)、信息整合(Anderson,1970)、多重线索学习(Brunswik,1955;Hammond & Summers,1972)、归因(Heider,1958;Kelley,1973)和Wyer和Goldberg(1970)的主观概率模型。因此,信念之间关系的模型似乎与Fishbein模型所建立的信念形成和变化的主要理论并不矛盾。
信念显著性。正如前面所讨论的,Fishbein和Ajzen建议使用定性的自由反应启发程序,通过要求受试者“列出对象的特征、质量和属性或实施行为的后果”来识别受试者群体对给定行为的显著信念(p.218)。对目前方法的一个可能的批评是,不能保证特定的信念实际上是显著的,因为没有采用所建议的启发程序。两个观察结果倾向于减轻这种担忧。首先,推荐的启发程序确实识别了显著信念(即那些对态度形成有影响的信念)的概念是一个几乎没有得到证实的假设。Jaccard和Sheng(1985)报告了一项解决这个问题的研究,他们应用了Fishbein方法,并将给定结果对个体的重要性按其从个体中引出的顺序进行索引。在职业生涯和节育决策中,这一启发式重要性指标与标准化回归系数之间的计算相关性分别为0.071和-0.429。Jaccard和Sheng的分析对Fishbein启发程序的有效性提出了质疑,并暗示由此产生的信念不应该自动地被认为是决定个人行为决定的最有影响力的信念。
第二个观察是,本模型中先验指定的信念是基于以前发表的相当多的理论和经验文章,这些文章跨越了广泛的系统类型和用户群体。感知有用性和感知易用性已被反复确定为控制用户接受过程的重要问题(见第3章)。因此,鉴于我们的目标是开发一个适用于许多情况的通用模型,它们似乎非常合适。相反,Fishbein引出方法需要从特定的受试者那里引出信念陈述,当他们被要求考虑使用一个特定的系统(或一组替代系统)时。由这种启发产生的信念集可能包含一些信念项,这些信念项与被启发信念的对象群体、目标系统或使用语境有关。此外,不可能将一般信念与特定背景的信念分开。幸运的是,在目前的研究情况下,现有的理论和实证文献提供了一个关于信念的重要信息来源,这些信念通常是显著的。由于这些研究跨越了广泛的用户群体、系统和使用环境,因此识别特殊信念的风险降低了,被挖掘的信念显著的概率增加了。
Fishbein和Ajzen认为,在给定的情况下,一个人通常有五到九个显著的信念。然而,研究者们已经开始拒绝每一个被引出的信念对应于一个不同的信念结构的观点,他们观察到单个题项经常彼此高度相关(例如,Bagozzi,1982;Hauser & Simmie,1981;Hauser & Urban,1977;Holbrook,1981)。因子分析通常被用来识别潜在的信念维度(结构),尽管多维尺度也被应用(Socker & Srinivasan,1979;Silk,1969)。人们普遍发现,在给定的情况下,相对较少数量的这种信念维度是有效的(通常为2-4,例如,Bagozzi,1982;Silk,1969)。基础结构的概念定义通常是从加载到维度上的项的内容推断出来的,项经常被视为维度的度量。
信念项的定性引出和因子分析是识别多属性模型信念结构的一种有价值的技术,尤其是在研究者没有操作信念结构的先验模型的情况下(Bagozzi,1983)。在特定的信念结构是基于理论考虑而先验指定的情况下,这种技术失去了一些吸引力,比如在目前的模型中。如果存在一组要建模的先验信念,则不需要使用这种启发式/因子分析来进行信念识别。对于测量发展,信念结构的先验规范允许研究者为这些结构制定有效和可靠的测量(Cook & Campbell,1979;Nunnally,1978)。
当然,仍然存在的可能性是,感知到的易用性和感知到的有用性并不代表在给定情况下显著的信念的完整说明。我们并不假定这些知觉代表一个完整的显著集合,而是把它看作一个有待检验的假设。感知有用性和感知易用性将被认为是显著的,只要它们对使用态度产生因果影响。此外,这两个信念未能在系统特性和使用态度之间进行充分的中介,可能表明一个显著的信念被忽略了。
信念测量。根据心理测量学文献(例如,Bohrnstedt,1970;Nunnally,1978)中推荐的程序,将开发和验证感知有用性和感知易用性的多项量表。有用性和易用性的概念定义将作为根据先前文献为每个构造生成初始度量题项池的基础。这些题项的措辞将被预先测试,以验证它们与它们打算测量的潜在概念变量的对应性。这些题项将使用Ajzen和Fishbein(1980年,附录A)推荐的比例格式进行操作。最后,对量表的信度和效度进行了检验。这个过程,在第4节中更详细地讨论,相对于Fishbein & Ajzen(1975;另见Ajzen & Fishbein,1980)提出的信念测量过程有许多优点。使用推荐的程序,引出的信念被直接转换为使用推荐的标准量表格式的信念度量(例如,Ajzen & Fishbein,1980)。这有一个问题,即只有一个单一的题项来衡量每个信念。不幸的是,单题项测量量表通常不可靠和有效(Cook & Campbell,1979;Nunnally,1978)。相比之下,目前的方法强调开发有效、可靠的量表。
主观规范。Fishbein模型的主观(社会)规范部分不包括在技术接受模型的规范中,因为在为其开发拟议模型的应用用户接受测试语境中,没有信息可提供给受试者,与他们的显著参照者关于他们使用目标系统的期望有关。Fishbein和Ajzen(1975,p.304)提出规范信念可以通过两种方式形成:“首先,一个给定的指称者或其他一些个人可以告诉这个人指称者认为他应该做什么,这个人可以接受也可以不接受这个信息。第二,这个人可以观察到一些事件或接收一些信息,这些信息允许他对给定指称者的期望做出推断。” 在用户接受度测试中,受试者通常是第一次看到目标系统(通常是新的系统原型),因此无法从参照对象那里获得线索来得出规范的推论。这意味着在用户接受度测试时不存在相关的社会规范影响。
在没有社会规范影响的情况下,当被问及社会规范影响时,受试者要么正确地指出他们没有规范信念,要么试图猜测他们的显著参照物的社会规范影响会是什么。前者应该导致主观规范对意向或行为没有影响,而后者可能会给主观规范的测量带来误差和歧义。尽管这种猜测不在Fishbein和Ajzen(1975)所提出的规范信念形成过程的范围内,但有趣的是,人们可以推测受试者如何去猜测他们的显著参照物对他们使用目标系统的期望是什么。受试者可以简单地把自己的态度投射到他们的显著参照物上,在这种情况下,他们的态度和规范成分应该大致相等,这使得社会规范成分不太可能在态度之外增加解释力。或者,受试者可以将他们的猜测建立在社会规范线索的基础上,这些线索是在实际的先前社会互动中收到的,这些社会规范线索不是与目标系统有关,而是与其他系统或目标系统所属的类别有关(例如,“我的老板希望我更多地使用图形,而这是一个图形系统,因此,他很可能希望我使用这个系统”)。这种“锚定”规范可能会产生一些有益的见解,尽管它们不完全符合Fishbein模式的对应标准,该模式建议社会规范结构应与正在处理的具体目标系统有关。在没有特定心理社会线索的情况下所作的规范判断在多大程度上受到主体态度、锚定规范和错误的影响,目前尚不清楚。这种有限的理论理解表明,在目前试图建立这种判断的模型是不成熟的。
在实验室环境中可能起作用的规范影响的潜在外部来源是受试者对实验者的预期(例如,Cook & Campbell,1979,p.67),以及其他参与者的社会影响。这种影响代表了不希望的实验产物,它们不代表在组织环境中自然发生的社会影响。巧合的是,正是这种实验者的期望,Dulaney(1961)在他的命题控制模型中用主观常模变量建模,该模型成为Fishbein模型的先驱。为了最大限度地减少这些干扰因素,在用户接受测试实验过程中,应采取预防措施,减少实验者的期望和社会互动。
行为意向。行为意向(Bi)变量也从模型中省略了。其主要原因是,意向反映了一个人已经做出的决定,并因此通过一个可能跨越一个重要时期的心理考虑、冲突和承诺的过程而形成(Einhorn & Hogarth, 1981;Janis & Mann, 1977;Warshaw & Davis, 1985)。一般说来,这段时间预期与决定的重要性成正比。决定是否在工作中成为一个新信息系统的用户通常被认为是一个相当重要的决定。在用户接受度测试中,测试对象使用新系统的动机将在向用户演示系统后直接进行。因此,形成意向所需的时间预计不会在测量之前过去。
当意向已经形成时(即当个人有做或不做行为的计划时,见Warshaw & Davis,1985)),意向通常是比态度更好的预测因素,尽管在没有意向的情况下测量意向(即当个人没有决定任何一种方式时)增加了“意向不稳定”的可能性,这是由于被试在意向测量后但在目标行为表现之前从没有意向转变为有意向。这种意向不稳定性是降低被测意向预测未来行为能力的因素之一(Ajzen & Fishbein,1975,p.370)。在受试者没有形成支持或反对某一行为的意向的情况下,他们的态度比他们的意向更能预测该行为(Warshaw & Davis,1985b)。
意向被理论化为态度和行为之间的因果中介。与意向不同,我们根据Fishbein和Ajzen(1975)的观察理论认为,在测量时,关于目标行为的态度已经形成,即信念通常是在对刺激的反应中迅速形成的(例如,p.411-509),以及“当一个人形成关于一个对象的信念时,他自动地同时获得对该对象的态度”(p.216)。因此,在目前的背景下,我们正在评估个体的态度和未来行为之间的关系,而没有明确地建模意向的中介作用。在引入Fishbein意向模型之前,态度研究者通常研究态度-行为的直接关系(例如,Wicker,1969),并继续寻求更好地理解态度预测行为的调节变量和条件(例如,Davidson和Jaccard,1979;Fazio和Zanna,1978)。
这一领域最重要的贡献之一是Ajzen和Fishbein(1977)对态度-行为关系文献的回顾,他们发现“只有在态度和行为实体的目标和行动元素之间的高度对应关系下,才能获得强烈的态度-行为关系(第888页)。” 如前所述,本模型中的态度结构与目标、行动、背景和时间框架元素具有特定性。
相关模型。市场营销文献中有少量的模型在形式和结构上与现有模型相似,并为现有模型提供了进一步的理论基础。Hauser和Urban(1977)提出了一个模型,通过知觉和偏好结构将产品选择方案的客观特征与选择行为联系起来。他们提出了一个新的健康维护组织(HMO)设计研究的数据。首先,突出的医疗保健替代方案是从受试者身上“唤起”的。然后,在诱发集上使用Kelly(1955)的预备网格方法从受试者中引出一组16个重要的产品属性项。对现有的替代品在属性上的评级进行了因子分析,产生了四个基本维度。运用单调回归和冯·诺伊曼-摩根斯特恩效用理论对感知维度对偏好的重要性进行了建模。使用随机选择的多项式logit模型对偏好与选择意向之间的联系进行了建模。此外,他们还分析了产品替代方案的细分和市场总份额。这种基本方法的扩展和应用也被提出(例如,Hauser和Simmie,1981;Tybout和Hauser,1981)。
Holbrook(1981)也提出了一个特征-感知-偏好模型。一首钢琴曲的客观特征是因人而异的。对38个语义差异态度对进行因子分析,揭示出五个关键知觉维度。使用评估性语义差异题项来测量情感。基于回归的递归路径分析被用来评估特征对知觉和知觉对影响的因果关系。四个知觉维度被发现是情感的重要决定因素,除了一个小例外,在特征和情感之间起中介作用。
虽然上述模型与目前的技术接受模型相似,但也存在一些小的差异。虽然这些模型中的偏好和情感结构似乎是基于对象的(AO),但本研究使用了基于行为的(Aact)情感结构,Ajzen和Fishbein(1977)认为,Aact与目标行为的联系更强,因此对目标行为的预测更强。相应地,上述模型使用对象的感知属性,而不是执行相对于构造的行为的感知结果。虽然Hauser和城市模型选择意向,但出于上述原因,意向不包括在本模型中。上述方法通过因子分析来识别知觉维度,而本模型则是基于理论考虑和事先研究的先验信念结构。最后,尽管上述模型是作为一般的产品设计方法提供的,但本模型是专门为组织环境中基于计算机的信息系统的用户接受建模而定制的。
本章的目的是分析所提出的技术接受模型与现有的基于计算机的信息系统设计和实现的实证文献之间的关系。通过在该领域现有工作的基础上建立所提出的模型,本研究试图遵循Keen(1980)的建议,他认为在MIS研究中建立“累积传统”的重要性。文献综述主要来自两个领域:管理信息系统(MIS)和人的因素。MIS文献被进一步分解为实验室和实地研究,因为从因果关系的角度来看,这两个子领域之间的重要差异。分析的目的是:(1)了解用户接受过程的理论和研究现状;(2)找出可能支持提出的模型结构的现有证据,和(3)确定提出的模型超出现有研究的程度。
回顾所用文献的方法是分析以前的研究与提出的模型相比较所涉及的因果关系。该分析参照图3.1进行,该图描述了TAM关系以及在文献中研究过的附加链接(编号1-10)。虽然这套文章不是详尽无遗的,但它提供了该地区研究的代表性图片。通过检索主要的MIS期刊,使用已经获得的文章的参考列表,并通过查阅期刊索引来确定评论的文章。不涉及图3.1中至少一种因果关系的文章不包括在分析中。为了以连贯的方式对文章进行分类,使用了对TAM结构定义的相当宽泛的解释。这使得使用一个简单的分类法来适应现有方法的巨大多样性成为可能。特别是,被编码为处理态度结构的研究包含了一套不同的态度操作和概念定义,包括感知属性、感知后果、社会影响、对对象(例如系统)的态度、满意度等。这反映了态度标签在该领域的广泛使用(Swanson,1982)。由于概念上的相似性,涉及“与工作的相关性”或“重要性”的结构被编码为等同于感知有用性变量。类似的解释灵活性也被用于解释变量是否使用易用性。如果严格遵守本研究中定义的使用态度、感知有用性和感知易用性的定义,大多数研究都不会遵守,从而与我们的目的背道而驰。设计特性、使用和绩效更容易分类。因此,在对研究进行分类时,研究者有必要做出一些判断,目的是灵活,同时保持与所建模的概念变量的精神接近。
MIS实验室实验
MIS实验室实验(见表3.1)通常使用学生受试者的多时段决策模拟。明尼苏达的实验(参考Dickson,Senn & Chervany,1977)是这种范式的典型。主要的设计特征是信息格式(表格与图形信息显示,原始数据与统计汇总数据),决策支持工具的类型,等等。因变量通常是决策模拟中的利润和费用绩效,尽管信息使用和知觉和态度变量受到分散的关注。此外,其中一些研究测量认知风格,并将其作为自变量之一。参考表3.1,我们发现MIS实验室实验主要集中在设计特征与绩效的关系上(链接10)。然而,正如前面所指出的,如果用户不使用系统,则不会产生绩效影响(在决策模拟中,由于实验的性质,用户通常需要使用系统)。
Benbasat和Schroeder(1977)利用决策模拟实验研究了报告格式(表格与图形)、决策辅助工具的可用性、异常报告(与无)、可用报告数量、决策风格和职能领域知识对成本绩效、时间绩效(均为链接10)和请求报告数量(使用度量,链接8)的影响。在库存/生产模拟中的10个决策点中的每一个,32名学生受试者就订货点、订货数量和生产时间表做出决定,并被允许购买信息报告。在测试的18个因果关系(6个独立乘以3个因变量)中,有3个在0.05水平上显著:决策辅助对成本绩效的影响,决策辅助对时间绩效的影响,可用报告数对请求报告数的影响。
Chervany和Dickson(1974)对22名工商管理研究生在生产/库存模拟中的生产成本、决策时间和决策信心的原始信息报告与统计汇总信息报告的影响进行了评估。受试者被要求承担生产经理的角色,负责在每周的决策点制定生产计划、劳动力变化和材料订单,以最大限度地减少工厂成本。与使用原始数据报告的受试者相比,使用汇总报告的受试者表现出更好的性价比,更低的决策置信度(两者都不显著),并花费更长的时间做出决策。因此,本研究关注的是特征-绩效的联系(10)。
DeSanctis(1983)评估了期望理论模型在实验室环境中预测决策支持系统使用的能力。该模型是根据Vroom(1964)工作动机模型的传统制定的。本研究是非实验性的,因为没有自变量被操纵。88个执行商业模拟的本科生被给予自愿使用决策支持系统的机会。DeSanctis测试了以下模型:
使用-绩效和绩效-结果预期,以及结果价被测量并组合成一个“动机强度”的度量。仿真的一个时间段的动机强度与随后时间段的实际系统使用相关联。使用的相关性很小,但很显著,在0.042-0.239之间。尽管DeSanctis测量的“动机强度”在本质上主要是认知的,因此并不严格等同于对使用的态度,但这些变量作为行为决定因素的理论相似性表明,DeSanctis的研究被编码为解决对使用的态度和使用之间的联系(链接6)见表3.1。
Lucas(1981)通过一个模拟的威士忌进口公司,评估了终端输出类型(图表与表格、CRT与硬拷贝)对决策绩效(链接10)、自我报告有用性(链接1)和满意度的影响。研究对象为119个暑期实践项目学生。研究发现,与在CRT上使用表格输出的受试者相比,使用表格硬拷贝终端的受试者表现明显更好,认为他们的输出更有用,并表现出更好的问题理解能力。在比较CRT上的图形和表格输出时,图形组将输出评为不太有用,表现出更好的问题理解,在决策绩效上没有差异。接受图形和表格输出的受试者比单独接受图形输出的受试者报告了更大的有用性。实验还发现,分析型和启发式决策风格与表格型和图形型信息格式在影响问题理解方面存在交互作用。
Lucas和Neilson(1980)在一个物流管理模拟中研究了CRT与电传打字机显示设备、基本报告格式与图形报告格式以及信息量对绩效和学习的影响(链接10),其中36名MBA学生、36名实习工业工程师和42名高级管理项目学生各自经营一家公司,在一个模拟行业中竞争。仓储和运输决策是在20个模拟周内做出的。研究发现CRT在决策绩效方面优于电传打字机,尽管在图形方面没有显著差异。研究还发现,额外的信息并不一定会导致更好的表现或学习。
Lusk和Kersnick(1979)进行了一项研究,以确定报告复杂性和心理类型对任务绩效的影响。本研究中使用的实验任务与本节回顾的其他研究中的生产/库存决策任务完全不同。本科受试者(n=219)被要求回答20个问题,使用包含在五个报告(实验处理)中的一个报告中的信息,这些报告在数据的表达方式方面有所不同:以原始形式;作为频率;以百分比表示,或以图形形式表示。他们回答的准确性被用作表现标准(链接10)。这五种报告格式在一个预测试中对其复杂性进行了评级。虽然在排序复杂度上相邻的两对报告之间没有发现显著的绩效差异,但与三个更复杂的报告相比,两个不太复杂的报告表现出明显的更高的绩效。
此外,在五种报告类型中的三种,分析心理学类型的表现优于启发式类型。Remus(1984)在模拟生产调度环境中讨论了图形数据格式与表格数据格式对53个商学专业本科生决策绩效的影响。与图形显示(链接10)相比,表格显示的使用导致了更低(尽管不显著)的决策成本。
Zmud(1978)研究了三种报告格式(图形、表格和条形图)对35名学生被试评定的几个感知题项的影响。本研究的目的是导出信息概念的维度。受试者的任务是评估3份报告的信息内容。本研究在形式和内容上都不同于典型的决策模拟研究。虽然文章中没有说明条目的数量和它们的身份,但对主题评分进行了因子分析,揭示了几个维度的信息。在因子分析得出的八个维度中,一个与易用性(“可读性”)有关,另一个与有用性(“相关性”)有关。因此,本研究涉及环节1和2。Zmud、Blocher和Moffie(1983)进行了一项实验,评估任务复杂性和彩色图形与黑白表格报告格式对决策准确性、决策信心和主题学习的影响。51名专业内部审计员对模拟发票进行了风险评估。任务复杂性是决定决策可信度和准确性的主要因素。虽然报告格式对决策准确性没有显著影响(链接10),但它确实与任务复杂性有显著的交互作用。
MIS实地研究
系统的组织实施,并倾向于更多地关注态度和看法等动机现象。然而,由于这些研究通常是基于组织的实地研究,研究人员通常不能自由地对被调查系统的特征进行实验操作。因此,用户动机和设计特征之间的联系(链接1和2)在这个阵营中得到的强调要少得多(见表3.2)。
Barber和Lucas(1983)研究了系统响应时间对CRT操作员生产率和工作满意度的影响。在用于评估工作满意度的一套量表中包括了系统满意度(“我喜欢终点站”)。这个变量类似于TAM对使用构造的态度。因此,这些作者研究了链接7,尽管响应时间对系统满意度的影响并不显著。然而,响应时间对生产率有很大影响(链接10)。
Fudge和Lodish(1977)使用了一个准实验设计来表明,与未使用该模型的销售人员相比,使用交互管理科学模型对销售人员的销售绩效有显著影响(链接9)。十对配对的推销员参与了这项研究,每对推销员中有一人接受使用的模型,另一人作为对照。
Fuerst和Cheney(1982)对石油工业中影响决策支持系统(DSS)自我报告使用的因素进行了研究。来自8家大型国际石油公司的64名DSS用户完成了问卷。作者发现训练、感知准确性、经验和感知相关性都与自我报告的DSS使用显著相关。为了本综述的目的,知觉变量被视为态度测量,这表明本研究是针对第六环节的。
Ginzberg(1981)在一项涉及44名投资组合经理的纵向实地研究中,基于用户实施前期望的现实性,评估了预测投资组合管理系统的接受和使用的能力。研究的预期领域包括:开发系统的原因、系统的重要性、预期的使用模式、系统的预期影响和系统评估标准。期望的现实性被定义为用户的期望与用户管理和系统开发人员的期望之间的差异。这些是在实施之前衡量的。在实施前还测量了一系列实施前态度,包括:系统的重要性、系统的价值、系统成功的可能性、对变革和科学管理方法的态度、对管理支持的感知和用户参与。通过从系统日志中获得的三个度量值,对每个用户的后续使用情况进行了客观的度量。使用5个主观结果评分来测量实施后的用户态度,这些评分包括:感知价值、使用水平、系统成功的可能性和对系统的满意度。Ginzberg发现,实施前对重要性和价值的感知都与实施后的满意度显著相关(r=0.31和0.45)。由于感知的重要性和价值类似于有用性,这些关系被编码为链接4。期望的现实性被视为一种普遍的态度结构,并被发现与用法的相关性很弱(r=.224, Link 6)。
Ives,Olson和Baroudi(1983)对Bailey和Pearson(1983)的用户满意度量表进行了进一步的心理测量分析。200名经理完成了两份单独邮寄的问卷。第二个问卷获得了一个单独的总体满意度测量来评估预测效度(两个满意度测量之间的相关性为。55)。在38个量表中,有30个量表的题项间可靠度在0.9以上。因子分析揭示了满意度指标背后的5个因素。作者提出了一个简化版的满意度量表。他们在一个总体尺度上计算了38个尺度中每一个尺度之间的相关性。其中三个量表与感知有用性相似(感知效用,R=0.67;产出相关性,R=0.77;计算机支持的工作效果,R=0.74);三个量表与感知易用性相似(对系统的理解,R=0.63;控制感,R=0.68;系统的灵活性,R=0.77)。本研究将总体指标视为一个人对使用的态度,涉及链接4和5。
King和Epstein(1983)检验了以下信息系统价值的多属性模型:
选择了代表信息系统的十个属性:报告周期、充分性、可理解性、不受偏见影响、报告延迟、可靠性、决策相关性、成本效率、可比性和数量性。作者测量了每个被试的重要性权重和属性评估,然后测量了被试对用10个属性表示的几个系统概要中的每一个的总体评估。对于三组不同的经理人,模型预测的总体价值与直接评级的相关性分别为0.721、0.918和0.856。总体价值变量类似于对使用的态度,在10个属性中,一个与有用性(“决策相关性”)有关,一个与易用性(“可理解性”)有关。因此,本研究被编码为分析关系4和关系5。不幸的是,既没有报告重要性权重,也没有报告每个单独属性与总体价值之间的相关性。
Lucas(1975)提出并检验了信息系统使用和绩效决定因素的模型。使用被假设受到:绩效、情境因素、个人因素、决策风格以及对系统的态度和看法的影响。绩效被假设为情境和个人因素、决策风格和使用的函数。从316名推销员和82名客户主管那里收集了关于他们使用销售信息系统的经验数据。绩效数据来自计算机文件,4个情境因素中有2个来自计算机文件,其余数据来自问卷。逐步回归分析支持态度-使用关系(链接6),混合支持使用绩效关系(链接9)。感知输出质量是态度变量之一,被发现与几个不同的使用变量有关(标准化回归权重从0.22到0.38不等)。
Lucas(1978)检验了一系列态度措施解释医学研究信息系统使用程度的能力。使用15种不同的措施进行评估(7种基于问卷,8种基于系统监测)。态度结构几乎都与使用显著相关。
Maish(1979)进行了一项态度调查,涉及来自四个联邦机构的62名受访者。该问卷包含态度问题,涉及一系列主题,包括管理支持、工作人员素质、访问和信息格式。一个4题项的自我报告使用指标也包括在内。一些态度量表与自我报告的使用显著相关(链接6),Pearson相关在0.10到0.54之间。
Robey(1979)使用Schultz和Slevin(1975)的态度仪器解释了66名销售人员对计算机化记录保存系统的实际使用。从公司记录中获得了两个实际使用的指标(这些指标是相关的。97)。在组成舒尔茨和斯莱文仪器的7个Likert分量表中,2个分量表因内部可靠性低而被取消。其余5个分量表都被发现与这两个使用测量显著相关(链接6)。其中,“绩效”分量表与使用的相关性最高(Spearman相关系数分别为0.79 & 0.76)。虽然绩效与感知有用性相似,但没有采取单独的态度测量,因此绩效被视为一个态度变量。
Robey和Zeller(1978)使用Schultz和Slevin工具来诊断为什么一家公司的一个部门采用和使用一个信息系统,而同一公司的一个相似部门拒绝相同的系统。舒尔茨和斯莱文仪器被给予到两个部门。在该工具的7个分量表中,有2个在部门之间存在显著差异:表现和紧急程度(链接6)。
Schewe(1976)对来自10家食品加工公司的79名计算机用户进行了调查。使用情况是通过“管理员/系统用户每月请求额外信息的数量”的自我报告来衡量的。采取了广泛的态度和信念措施。结果表明,态度与使用没有关系(链接6)。这可能归因于所采用的特定使用度量:“管理员/系统用户每月要求提供额外信息的次数”(第584页)。受试者可能在没有提出这种要求的情况下大量使用了该系统。在许多信念题项和态度之间观察到强烈的关系,没有一个与本分析相关。
Schultz和Slevin(1975)开发了一种测量个人对OR/MS创新态度的工具。通过对文献的回顾,他们选择了被认为与“组织环境中的执行问题”相关的81个初始变量集(第156页)。这些被用来形成Likert声明,其措辞是“实施后会发生什么”。11个语义差异概念,也是基于文献,被创建和纳入“作为某种探索性工具”。对136名MBA学生进行了试点测试。对Likert和语义差异项的反应进行了因子分析,得到了10个因子的反应表示。初步测试产生了一份包含67个李克特题项和11个语义差异题项的修订问卷。在这一点上,增加了五个因变量(自我使用的概率,他人使用的概率,成功的概率,感知价值,感知准确性水平)。
接下来,Schultz和Slevin Field对94名管理人员测试了修订后的工具,该工具涉及一个正在制造公司实施的新的计算机预测模型。对67个李克特题项进行因子分析,得到7个因子,分别为:绩效;人际交往;变化;目标;支持/阻力;客户/研究员;和紧迫感。绩效因素被视为“模型对经理工作绩效的影响”。这与TAM语境中感知有用性的定义几乎完全相同。此外,“感知价值”因变量是在一个带有锚定形容词的量表上测量的:“根本没用”;“适度有用”;和“优秀”,因此很可能利用了TAM的“感知有用性”结构。感知价值与绩效因素之间的相关关系(r=.59)符合这一可能性。在11个语义差异概念中,概念1和7(成功机会和重要性)可以被视为对系统本身的评估。此外,用来测量每个语义差异概念的10个形容词对是那些已知在评估维度上显著负载的形容词对(Osgood,Suci & Tannenbaum,1957)。由于使用评估形容词对的语义差异量表代表了在Fishbein范式(Ajzen & Fishbein,80;Fishbein,64,67;Fishbein & Ajzen,75)中测量态度的最高度重合的方法,这两个概念的评级可以被视为对系统态度的评估(尽管不一定是对使用系统的态度)。在这两个概念评级和两个绩效因子之间观察到的高度相关(r=.56&.63),和感知价值(r=.68 & .68)之间的高度相关可以被视为有用性-态度关系的证据(链接4)。此外,这两个语义差异得分也与第一个因变量(自我预测使用)高度相关(.53 & .68)。这与态度与行为期望之间的理论关系是一致的(Warshaw & Davis,1985)。
Swanson(1974)使用16个知觉项测量了一个他称之为“错误欣赏”的结构。由于这些题项的评估性质,欣赏结构类似于态度。使用非参数卡方检验,Swanson发现赞赏与系统使用指标“询问参与度”密切相关(P<0.01,链接6)。
人类因素文献(表3.3)长期以来一直关注几种类型的系统的广泛设计特性,尤其关注文本编辑器和数据库查询语言。这些研究者已经开始对知觉和态度因变量给予越来越多的关注。
Bewley等人(1983)关于作为Xerox 8010 'Star'工作站设计的一部分进行的四个实验的报告。前两个是关于将光标控制功能分配给鼠标指向设备的按钮。第一个实验在选择时间方面比较了六种不同的方法。从第一个实验中获得的见解被用来制定第七个方案,通过第二个实验证明,该方案提供了比前六个更快的指向时间。因此,实验一和实验二涉及特征-绩效(10)环节。第三个实验通过定时测试(链接10)和主题分级的“从人群中轻松挑选”(链接2)比较了4组图标的可识别性。显然,没有发现明显的差异。第四个实验比较了两个版本的图形编辑器交互界面的插图时间(链接10)。
Card, English and Burr(1978)比较了鼠标、等长操纵杆、步进键和文本键作为光标定位设备,用于在CRT上选择文本。因变量是在CRT上选择文本的速度、学习时间和错误率(链接10)。在实验设计中,目标距离、目标大小和接近角都是不同的。他们发现鼠标是最优越的指点设备,并观察到它的使用似乎受费特定律的支配,认为使用鼠标指点的时间接近理论上可以达到的最短时间。
Card, Moran和Newell(1980)制定并经验评估了他们的“击键级模型”,用于预测用户的绩效时间。该模型将专家用户执行指定任务所需的时间分解为其组成部分。任务组件部分地由编辑器的特性(例如,执行任务所需的击键次数、光标定位设备的类型)和部分地由人的能力确定。使用时间和运动研究、经验定律和其他来源的标准数据估计执行每个组成部分所需的时间,包括人类的精神和运动操作以及系统响应时间。基于该模型的预测时间与实际表现时间高度相关(r=.87)。在表1中,这项研究被编码为解决了设计特征(即所需的击键数)和绩效(链接10)之间的联系。
Good(1982)将交互式文档处理系统Etude与标准打字机在训练和表演时间(链接10)、主题焦虑和12个语义差异项进行了比较。其中的两个语义差异项(不友好-友好;帮助-不帮助)可以被视为敲击感知的易用性(链接2),其中至少两个(糟糕-尼斯;不愉快-愉快)与使用态度有关(链接7),尽管在两个测试系统中只有糟糕-尼斯的得分显著不同。
Gould,Conti和Hovanyecz(1983)进行了两个实验,比较了几个版本的模拟听力打字机。在第一个实验中,我们对八种不同的写作方法进行了比较,这些方法综合了两个设计特点:语音模式(孤立词与连续词)、词汇量(1000词与无限词)和写作策略(草稿与定稿)。手写这封信是一种额外的方法。因变量是作文时间、由评委排序的信件有效性(都是链接10),以及使用每种方法相对于写作的偏好(链接7)。由于使用手动方法与系统的各种版本进行了比较,因此该实验被编码为还解决了使用-绩效环节(9)。第一个实验旨在将打字机听力与手写信件进行比较,而第二个实验则将其与听写进行比较。五个版本的听力打字机,创造了不同的设计特点,相互比较,并向听写机和秘书口述。因变量为:作文时间、证明时间、信件有效性(链接10);和首选项(链接7)。此外,第二个实验研究了特征使用环节(8),要求受试者选择任何版本的听力打字机、听写机或秘书来完成终端的听写任务。
莱加德等。(1980)对交互式文本编辑器的自然语言语法与更传统的符号语法进行了比较。因变量是客观的绩效指标,如编辑效率(链接10),以及主观偏好评级(链接7)。自然语言交互界面受到强烈青睐。
Magers(1983)讨论了在线帮助对几个绩效变量(包括任务时间和错误,链接10)和几个知觉和态度题项(链接7)的影响,其中至少包括8个与易用性相关的题项(链接2)和1个与(命令)有用性相关的题项(链接1)。在线帮助对几乎所有的应答变量都有积极的影响
Malone(1981)报道了三项与电脑游戏设计有关的研究。第一项研究是对小学生电脑游戏偏好的调查。游戏的各种特征被发现与偏好显著相关(链接7)。在第二项研究中,对一款电脑游戏的六个版本进行了比较,这些游戏包含了不同的功能组合,它们的受欢迎程度如何(链接7)。同样,观察到了显著的效果。第三项研究还探讨了设计特征与版本受欢迎程度之间的联系,但包括了一项行为使用测量,衡量受试者玩治疗游戏和控制游戏的时间(链接8)。偏好和使用之间的相关性为。30(链接6)。
Miller(1977)研究了交互式信息检索系统的波特率、输出率可变性和输出量对用户绩效的影响(链接10)和18项用户满意度测量(链接7)。其中一个题项测量系统命令的易用性(链接2),其中五个题项形成了一个感知有用性指标(链接1)。有趣的是,他发现虽然波特率对态度或表现没有影响,但波特率变化对表现、易用性和有用性有非常显著的负面影响。
Poller和Garter(1983)从易用性(链接2)、速度和错误率(链接10)等方面比较了模式化和非模式化文本编辑,发现虽然非模式化编辑器在易用性标准上表现更好,但它需要更长的时间,并且与更多的错误相关联。这是一个有趣的发现,它表明感知的易用性可能与通过绩效度量操作的“实际”易用性并不相关。
Price和Cordova(1983)研究了鼠标按钮的不同配置,发现:在各种指向任务(链接10)中,“人们使用不同的按钮往往比不同的点击次数更快更准确”(第262页)。
Roberts和Moran(1983)报告了对现有九种文本编辑的比较。因变量是:执行基本编辑任务的时间、错误时间、学习时间和编辑器功能的分析度量(定义为在编辑器上可行的预定义任务集的百分比)。Card等人(1980)的击键级模型预测的执行编辑任务所需的时间与专家用户的实际执行时间相关0.9。尽管编辑器本身的特征没有被实验操纵,但编辑器的4个特征与学习时间显著相关:编辑器中核心命令的数量、每个任务的物理操作数量、每个任务的方法块数量和专家时间得分。因此,该研究报告被编码为处理了设计特征与绩效之间的联系(链接10),联合国表1。
施奈德曼等。(1977)关于五个实验的报告,这些实验比较了在各种编程、调试和程序修改任务中使用流程图和不使用流程图。因变量都是客观的绩效标准,由于自变量是使用与不使用,而不是不同流程图技术的比较,这些研究在表3.2中被编码为解决了使用-绩效环节(环节9)。值得称道的是,所有五项研究都没有发现对流程图的显著影响。
已经发表了一系列与数据库查询语言设计有关的实验(有关综述,见Reisner,1981)。这些研究的共同特点是,它们主要关注特征-绩效联系(10)。一些研究还测量了对查询正确性的置信度,尽管这种结构在目前研究的拟议模型中没有表示,因此没有图3.1所示的因果联系。Reisner,Boyce和Chamberlin(1975)比较了Square和Sequel查询语言。因变量是通过纸笔测试和铅笔测试来衡量记忆的正确性和易记性。Thomas和Gould(1975)报告了使用示例语言编写的查询的客观定义的正确性以及对查询正确性的主观置信度,尽管没有与其他语言进行实验比较。Greenblatt和Waxman(1978)从查询正确性、查询置信度和查询编写速度三个方面比较了三种关系数据库查询语言。Lochovsky和Tsichristzis(1977)比较了H erarchical、关系和网络数据模型,同时保持命令语言语法不变。其因变量包括编码准确度、编码时间、调试时间、查询理解度和查询正确性。Brosey和Shneiderman(1978)报告了两个实验,分析了数据模型(关系模型和层次模型)对理解、问题解决和记忆的影响。Welty和Stemple(1981)比较了两种主要在程序化程度上不同的语言:SQL和Tablet, 使用查询正确性作为评估标准。
除了上面讨论的研究之外,还有一些与本研究相关的研究没有涉及图3.1中的特定关系之一。下面讨论这些问题。Bailey和Pearson(1983)提出了一种“计算机用户满意度”的测量方法。他们从文献综述中生成一个最初的因素列表,然后添加他们采访的数据处理专业人员建议的其他因素,从而确定了一个39个因素的列表。通过关键事件分析检查了扩展列表的完整性。使用四个语义差异量表和适当的终点形容词测量被试对一个因素的反应;每个因素的重要性权重也被测量。答复和重要性权重按以下公式组合:
在贝利和皮尔森提出的39个因素中,有三个似乎与感知的易用性有关:“对系统的理解”、“控制感”和“系统的灵活性”;其中三个似乎与感知有用性有关:“相关性”、“感知效用”和“工作效果”。问卷由29名受试者完成,所得数据用于评估该工具的信度和效度。每个因素的4个题项的平均信度为.93。之间的关系
Gallagher(1974)比较了评估信息报告价值的两种替代方法:估计年度美元价值和语义差异意见。在对52名管理者的实地研究中,这两种方法之间的相关性为0.29(P<0.05)。15个语义差异项中的许多项在意义上与TAM感知有用性结构相似:有用-无用;相关-不相关;重要-不重要;适用-不适用;必要-不必要。
Larcker和Lessig(1980)对测量信息“感知有用性”的工具的初步发展进行了研究。基于对文献的回顾,作者提出感知有用性由两个不同的维度组成。第一种被称为“感知重要性”,是指“使特定信息集获得与决策者相关的质量,是信息项是否”是完成任务的必要输入“的函数。第二个维度被称为“感知的可用性”,是“信息格式是否明确、清晰或可读”的函数。一个开放式的启发过程被用来为维度生成一个由13个属性组成的初始集合。接下来,这些题项由6名评委评定为感知到的不公平或感知到的有用性。其中7个题项被消除,每个维度产生3个题项。然后对29名教师和研究生进行了信度和内容效度的调查。每个受试者在给定的决策情景中对4个不同的信息集进行评分。因子分析和多性状多方法分析证实了重要性和可用性是不同的维度。三点量表的可信度在0.636到0.773之间。
Larcker和Lessig研究的两个维度与提出的技术接受模型的两个知觉维度相似。感知重要性是指信息对于手头的任务是否必要,而感知有用性是指系统使用对生产率的预期影响。因此,当重要性是指做任务的可行性时,有用性是指系统执行的任务是否是个人工作的重要组成部分。感知的可用性与感知的易用性非常相似,两者都与使用系统(或信息集)执行目标任务的工作量有关。Larcker和Lessig发现可用性和重要性是不同的结构,这一事实支持了在技术接受模型中将感知的有用性和感知的易用性作为不同的结构来表示。
纵观这三大类文献,我们发现除了易用性联系之外,TAM的所有六个关系都有实证支持,而这些研究都没有涉及到易用性联系。发现系统特性与感知的有用性(Lucas,1981;Magers,1983;Miller,1977)和感知的易用性(Bewley,1983;Magers,1983;Miller,1977;Poller & Garter,1983)之间存在显著的关系。态度受到感知有用性(Ginzberg, 1981;Yves, Olson & Baroudi, 1983;Schultz & Slevin, 1975)和感知易用性(Ives, Olson & Baroudi, 1983;Schewe, 1976)的显著影响。尽管使用了大量的态度和用法测量,但许多研究人员观察到了显著的态度与用法关系(Fuerst & Cheney,1982;Lucas,1975;Lucas,1978;Maish,1979;Robey,1979;Robey & Zeller,1978;Swanson,1974)。发现态度和使用之间没有显著关系的研究人员似乎要么使用新的未经证实的态度测量程序(例如“力量”,DeSanctis,1983;“期望的现实主义”,Ginzberg,1976)或可疑的使用操作化(例如Schewe(1976)对额外信息请求的测量)。
因此,TAM中所反映的六种个别因果关系中的五种已经存在非微不足道的经验支持。同时,没有一个被回顾的研究处理了所有六个TAM关系。从这个意义上说,TAM倾向于集成以前的发现,产生一个比以前的方法更完整的规范。例如,通过MIS实验室研究(表3.1)和人为因素研究(表3.3),我们发现这些面向实验室的研究一直关注设计变量的影响。这些研究传统上大多使用某种形式的绩效标准作为因变量,但越来越多地关注态度和知觉变量。然而,他们往往没有解决知觉、态度和使用行为之间的关系。相比之下,管理信息系统领域的研究大多将注意力放在对使用行为的感知和态度决定因素的建模上,而通常忽略了影响这些行为决定因素的关键管理可控变量之一:系统特性。本研究的立场是,这些方法是互补的,一个包含设计特征对知觉的影响和知觉对态度和行为的影响的综合模型是推进与用户接受过程有关的理论前沿的合乎逻辑的下一步。
本章报告的调查有两个主要目标:(1)实证检验提出的技术接受模型(TAM)的假设因果结构;(2)开发和验证测量TAM理论结构的量表。下面将更详细地讨论这些问题。
在确定测量TAM变量的量表的过程中,逻辑上的第一步是扫描文献,寻找符合信度和效度标准的现有量表。在使用态度方面,心理学文献(如Ajzen & Fishbein, 1980, 附录A)中提供了标准的、经过验证的、多题项的行为态度量表。标准测度采用7分等级量表格式,与评估性语义差异(Osgood, Suci & Tannenbaum, 1957)形容词对(如“good-bad”)相结合,通常在期望范围内显示可靠性值(例如,Bagozzi, 1981;Fishbein & Raven, 1962)。通过指定所需的目标(系统)、行为(使用系统)、语境(在您的工作中)和时间框架(未指定的未来),这些标准尺度很容易适应当前的语境。四到五个题项通常用于确保所需的心理测量属性。这些标准量表将在本研究中用于测量对TAM的使用态度。
然而,在感知有用性或感知易用性方面,目前还没有经过验证的多题项量表,其期望的信度为.80。Fishbein范式(例如,Ajzen和Fishbein,1980,附录A)提供了信念一旦被指定的推荐格式,尽管它没有为特定的信念变量提供完整的尺度。对第3章讨论的现有管理信息系统和人为因素文献进行了回顾,以满足规定的要求。大多数测量有用性或易用性的研究要么采用单项量表,要么没有报告所用多项量表的心理测量学特征。其余候选多项量表的信度低于预期水平,或未经验证,或两者兼而有之。Robey(1979)使用了Schultz和Slevin(1975)的工具,其中包含一个叫做“绩效”的因素,它类似于感知的有用性。他发现该量表的Cronbach Alpha信度为0.81,尽管最初的工具未经验证,但它是通过探索性因素分析开发的,绩效量表也包含与“绩效可见性”有关的题项。Larcker和Lessig(1980)确实对他们的“有用性”和“重要性”三项量表进行了内容分析验证,但可靠性低于我们期望的水平(0.64-0.77)。Ginzberg(1981)2题项“重要性”量表的信度为0.59。Bailey和Pearson(1983)的工具包含类似有用性因素的三个4项的语义差异量表(“相关性”、“感知效用”和“工作效果”)和四个4项的与易用性相似的因素量表(“错误恢复”、“对系统的理解”、“控制感”和“系统的可获得性”)。然而,对这些因素中的每一个给受访者的定义都与本研究中有用性和易用性的概念定义相去甚远。Bailey和Pearson(1983)进行了内容分析验证,尽管他们是从这些因素的角度来衡量“计算机用户满意度”的,因为OP提出了有用性和易用性本身。Miller(1977)没有为他的3项易用性和有用性量表提供信度或效度的证据,Schewe(1976)也没有给出与他的3项易用性量表相关的证据。
鉴于现有文献中缺乏足够可靠和有效的量表,将制定新的感知有用性和感知易用性量表。正如稍后将讨论的那样,现有文献中的量表将用作构建新量表的题项来源。与Ajzen和Fishbein(1980)一致,感知将使用Likert类型(“同意-不同意”)评级格式进行测量。在下面报告的调查中,对信念声明的同意程度是使用7点“圈数”评级表格式来衡量的。
上面报告的研究结果提出的一个重要问题是技术接受模型如何可能在实际设计环境中应用。图6.1描述了本研究建议的一个潜在的通用“用户接受测试”程序。这一程序的目的是从广泛的可能的新支助系统中系统地选择那些最有可能满足预定用户的需要并为预定用户所接受的支助系统。整个过程由四个不同的子过程组成,每个子过程都有不同的目标:机会扫描、功能筛选、交互界面筛选和原型测试。
机会扫描的目的是建立和保持对新的和正在出现的信息技术的最新了解,并认识到这些新技术对潜在终端用户工作内容的适用性。在分析用户的工作内容时,重点必须放在用户和他或她的工作活动上,而不是技术本身。因此,这种机会扫描的元素在精神上与传统的系统分析相似。在过去的几年里,已经建立了各种专门用于分析和记录潜在终端用户工作内容的工具。例如,“关键成功因素”方法(Rockart,1979),通过引出对成功实现他或她的业务目标最关键的因素,将焦点放在用户身上。“办公室自动化方法学”(Sirbu,et al.,1983)提供个描述性概念框架和一个相关的访谈方法,用于描述性地分析办公室工作人员的工作活动,作为指定系统需求的输入。诸如这些的方法可以容易地适用于用于分析潜在终端用户的工作内容的当前用户接受测试过程。高级管理人员越来越认识到将信息系统优先事项与业务优先事项联系起来的价值,这就强调了不断了解用户工作内容的重要性(例如,Benjamin等人,1984;McFarlan & McKenney,1983;Rockart,1982)。
在保持对用户工作内容的认识的同时,信息系统组织必须跟上新的和正在出现的信息技术。新的信息技术的出现通常可以在五年内,往往更长的时间内预测,具有适当专门知识的专业人员有相当程度的信心。即使新技术在市场上可用,在它们经历广泛应用之前通常也有很长的滞后时间。组织越来越认识到能够以有效的方式应用最新技术的战略优势(例如,Benjamin等人,1984;McFarlan,1984)。当这些新技术变得可用时,组织应该能够分析他们在公司中的潜在作用。因此,技术跟踪和用户工作内容分析工作之间应该存在积极的相互作用,如图6.1所示。许多组织正在建立专门的部门,负责确定在企业中有效应用新信息系统的机会(例如,Benjamin等人,1984;McFarlan,1984)。
对用户的工作内容和新信息技术的共同认识使本组织能够积极主动地查明向最终用户提供有效的计算机支助的潜在机会。
功能筛选旨在从一大组潜在的功能能力中筛选出那些被认为对潜在用户受众成员最有用的功能。功能能力是对某种新的或现有的信息技术可以应用于潜在用户组的工作活动的方式的规范。这里的重点是测量候选功能的感知有用性,而不是感知易用性。通过前面的机会扫描阶段识别候选功能能力的初始集合。然后通过非交互式刺激介质例如口头描述、幻灯片演示或录像带将候选功能能力呈现给用户。目前的研究表明,非交互式媒体(尤其是录像带)有希望准确地评估感知的有用性,尽管未来的研究需要界定这种准确性的界限以及非交互式媒体的具体特征如何影响这种准确性。正如前面所讨论的,非交互式媒体相对于交互式媒体有许多优点。它们使信息系统从业者能够评估目前不存在的功能能力,并以相对较低的每个主题成本管理广泛用户受众的研究。在非交互式媒体中可能很重要的一个特征是,它是否根据目标用户在工作环境中如何使用它来展示功能能力,而不是简单地展示其技术方面。潜在用户可能很难判断他们以前从未见过、对此知之甚少的非常新的技术是否适用于他们的工作。根据如何在工作环境中使用新的技术能力来说明新的技术能力,应该使受试者更容易判断新能力相对于他们的工作需要的好处和缺点。所介绍的技术能力与受试者更熟悉的支助工具的偏离程度如何影响有用性判断的准确性,这仍然是一个研究问题。
除了测量受试者对候选功能能力的有用性的感知外,还可以测量被支持的任务对受试者工作的重要性。这将使信息系统从业者能够例如使用聚类分析(例如,WIND,1'78)来识别特定应用对其特别有用的用户群体的部分。所得到的数据被用来对各种功能能力进行优先级排序,并筛选出那些被认为有用性较低的功能。
交互界面筛选可以独立于功能筛选并与功能筛选并行地进行。新的信息技术正在迅速创造新的和不同的人机交互模式,如:语音输入和输出、自然语言输入、触摸屏、三维触控板、动画和眼动输入。交互界面筛选旨在找出受试者在执行各种基于计算机的任务时最容易和最愉快的交互界面模式。本研究表明,为了使受试者形成准确的易用性感知,交互界面测试应该使用与测试系统的直接动手交互来进行。在人类因素文献中有许多这类测试的例子(见第3章)。由于进行这种交互界面研究的费用相对较高,这是由于需要与测试系统交互界面进行实际交互,因此预计用于交互界面筛选的受试者数量将比用于功能筛选的受试者数量少。此外,单个交互界面筛选研究可以与多个功能筛选研究结合使用。交互界面筛选研究的结果被用来根据易用性和愉快性对各种候选交互界面模式进行优先排序。在某些情况下,原型筛选过程可以与下面讨论的原型测试过程相结合。在考虑的候选交互界面模式数量较少的情况下,这种情况尤其可能发生。
当替代功能能力和交互界面模式的集合被优先化并缩小到少数几个替代方案时,原型测试阶段就被执行了。首先,通过结合高优先级的功能能力和交互界面模式,定义了一组可供选择的系统。替代系统原型化,可能利用各种可用的快速原型化或系统模拟工具(例如,Beregi,1984;Maurer,1983)。接下来,用户使用原型版本执行示例任务。他们对系统替代方案的动机反应被测量,包括结构,如感知有用性、感知易用性、预期使用乐趣、系统输出质量、行为期望以及可能的任务特定感知和重要性权重。第5章将对这些问题进行更详细的讨论。通过对这些用户测量结果的分析,可以确定目标用户最能接受的一个或多个系统。此外,知觉数据提供了诊断信息,关于潜在的总体接受可能性的原因,并可能建议其他设计被考虑。正如其他用户测试IGMS(例如,Gould & Lewis,1983),在某些情况下,设计者可能会发现在确定终端目标系统(或一组系统)之前迭代测试附加配置是有价值的。选择作为终端目标应用系统的原型替代方案用于定义新系统的需求。然后,系统开发人员可以根据诸如系统开发生命周期(例如,Alavi,1984)等现有开发过程,基于这些需求继续开发终端系统。
为了执行用户接受测试,考虑MIS专业人员所需的技能是很重要的。虽然需要进一步的研究和经验来更好地理解这些技能要求,但拟议的用户接受测试程序的各个步骤表明了所需的专业知识种类。实施机会扫描程序所需的关键技能领域包括:理解构成用户工作内容的基本业务流程的能力、与当前或潜在信息系统用户有效互动的能力,以及在信息系统技术方面相当先进的专业知识水平。由于这些技能很难在单个个体身上找到,因此指出了一个多学科的团队组成。对于筛选和测试程序,将需要实验设计、问题设计、抽样、运行受试者和分析数据的额外研究技能。需要更好地理解围绕如何组织用户接受测试功能的几个问题,以便将建议的过程付诸实践。
特别值得关注的是不同程序的责任分工,以及用户验收测试组保持客观观点的能力,相对地与支持关节系统配置的联盟的潜在功能障碍影响绝缘。 很可能在许多组织中,存在/目前存在的组,对他们来说,增加用户验收测试责任将是一个自然的步骤。 前面已经提到了许多公司中负责技术扫描的小组。 此外,“信息传递者”和其他形式的最终用户支持组织通常有责任将可用工具与用户需求相匹配。 最后,许多供应商组织都有可用性测试实验室,它们执行与界面筛选类似的功能,尽管通常是在开发过程的后期完成的。 这些现有的组可以构成用户验收测试功能的基础。
本节的目的是简要概述技术接受模型的理论和应用方面的一系列主题
技术接受模型测量感知的易用性,而许多人为因素方法通常以各种实验室性能指标的形式测量客观易用性,如任务完成速度和错误率(见第3章)。 一个重要的问题涉及到客观和主观的易用性在多大程度上相互关联。 如果它们在给定的情况下不相关,哪一个在正确的易用性? 它们是不同种类的易用性吗? 需要定义每种易用性度量最合适的领域。 例如,客观易用性可能更适合于诸如订单输入系统等非自由裁量的系统,而主观易用性可能更适合于主观反应是决定系统成功与否的关键因素的自由裁量系统。
主观有用性与客观有用性。类似的分析可能会对有用有启发。工作绩效的预期收益是否能预测实际绩效收益? 用户是否认为他们的生产率更高,而现有的生产率数据却不能证明这一点?在这一领域研究的一个障碍是难以操作和定义组织绩效。
用户采用作为目标。本模型将新系统的接受和使用视为一种行为,这种行为在很大程度上受潜在用户的意志控制。然而,有些用户可能会把采用一个新系统作为一个目标,由于能力的限制,有些可能达不到目标。如果是这样的话,一个重要的研究问题就是成功和失败的预期和后果在多大程度上影响了用户采用目标系统的动机。最近对Fishbein模型的理论扩展(Warshaw & Davis, 1985;在出版中;Warshaw, Sheppard & Hartwick, 在出版中)专门用于解决行为目标。这一最新的理论和研究为解决采纳的目标方面提供了适当的基础。
主观规范成分。本文测试的技术接受模型的版本中省略了Fishbein模型的主观规范成分。然而,这个变量代表了在预测系统的组织采用方面增加解释力的潜在来源。我们在第二章中论证了主观规范在实验室中不太可能起作用。虽然TAM的目的是用于基于实验室的用户接受测试,但它也是为了反映实验室外基于组织的接受过程。因此,它应该关注社会规范影响在组织环境中的作用。因此,今后的研究应关注主观规范影响在用户接受过程中的作用。
回想一下,模型的目标是解释将系统的设计特征与实际使用行为联系起来的因果机制。因此,一些理论关注的焦点集中在主观规范作为一种替代机制的可能作用,通过这种机制,系统特征的差异可能会影响使用。一个系统的特性可能会影响一个参考者关于潜在用户是否应该使用该系统的意见,这是相当合理的。如果这种对主观规范的影响直接影响到意向或行为,那么我们应该把主观规范看作是一种中介结构,而不是态度。反之,如果社会规范只是通过对态度的影响间接地影响行为,那么主观规范就不是一个独立的中介,它对行为的影响是通过态度来中介的。
虽然Fishbein模型没有明确地处理主观规范通过态度对意向的间接影响,但最近的研究表明这种影响可能是主要的作用。这项工作的概念基础是Kelman(1961)对社会影响可能影响行为的三个不同过程的理论区分:认同、内化和顺从。社会影响的识别和内化效应被理论化为通过个人的态度结构运作(Warshaw,1980)。顺从是指个体为了获得奖励和避免来自显著参照者的惩罚而做出与自己的态度不一致的行为的情况,与“感受到的压力”有关(Warshaw,1980)。Ajzen和Fishbein(1980,p.262)建议使用量表来衡量主观规范,如“大多数对我很重要的人认为(我应该/不应该)执行行为X。” 正如Warshaw(1980)所指出的,这可能不能反映指称物对一个人意向的真正影响,因为:“主体可能想做指称物X认为他/她应该做的事情,不是因为X的影响,而是因为行为与主体自己的AB一致。” 事实上,这种解释常常归因于态度和规范之间典型观察到的高度相关性,这种相关性往往超过这两种结构和意向之间的相关性(Warshaw,1980)。因此,标准的主观规范量表显示了指称期望和主体态度的巧合等值,以及真实社会影响过程的内化、认同和遵从要素。本研究的启示是,社会影响的内化和认同过程可能是将系统特征与个体的态度信念结构联系起来的机制,而遵从可能是态度之外的另一种规范中介。
在现有技术接受模型中,对主观规范影响的作用的进一步研究可能会对用户接受过程的动力学产生更全面的理解。
上述研究从三个角度对管理者的关注很重要:(1)从管理者作为新信息系统潜在用户的角度,(2)从负责开发新终端用户信息系统的设计团队或组织管理者的角度,(3)从用户组织管理者的角度。
作为用户的管理者。管理人员是潜在终端用户总数的主要组成部分。管理人员的工作内容很大程度上强调信息处理、沟通和决策活动(例如,Mintzberg,1973)。这些都是以计算机为基础的支助可以发挥有益作用的活动。需要大量的信息来计划和协调管理者所负责的资源和人员的活动。管理者经常面临高度的不确定性,对此,获得适当的信息和用于分析、总结、解释和显示信息的适当工具是有价值的。管理人员可以从直接使用基于计算机的信息系统中受益的想法已经存在了一段时间。由于管理人员所做工作的重要性,以及他们得到的高薪,通过信息系统为他们提供支助一直是一个高度优先事项。不幸的是,过去在计算机支持系统开发方面的进展是缓慢和痛苦的。原因包括管理工作的高度复杂性、可用技术工具的局限性以及对如何为管理者设计有效的支持系统缺乏理解(Keen & Scott Morton,1978)。最近,管理支持系统的有效设计和实施出现了相当戏剧性的高潮(Rockart & Scott Morton,1984;Rockart & Treacy,1982;Keen & Woodman,1984)。个人计算机硬件和软件的进步是这一增长的主要影响因素。此外,正在使用越来越复杂的技术来理解管理工作的性质和设计有效的支助系统的过程也是因素。我们期望在本报告中提出的用户接受测试方法将有助于我们为管理终端用户设计越来越有用的系统。此外,正在使用越来越复杂的技术来理解管理工作的性质和设计有效的支助系统的过程也是因素。我们期望在本报告中提出的用户接受测试方法将有助于我们为管理终端用户设计越来越有用的系统。
开发组织的管理。负责指导设计或开发组织试图创建成功的新系统的活动的经理也应该从上述研究中受益。技术接受模型使开发经理能够更好地理解用户接受新系统的关键决定因素,并理解设计团队的各种关键决策如何影响他们生成的新系统的成功。在此背景下,该模型作为一个框架,用于思考和建立给定新系统的各种需求和设计准则。建议的用户接受测试过程使经理能够在新技术的进展中评估新技术,并指导设计团队朝着高优先级设计配置的方向努力。开发组织的高级管理人员呼吁开发人员更多地注意设计更容易使用和更有用的系统,并在开发过程中使用技术来测试和改进系统(Branscomb & Thomas,1984;Gould & Lewis,1983)。本研究为保证高可接受系统的一套技术做出了贡献。提出的用户接受测试过程可能会从管理开发中带走大量的猜测工作,并降低新系统的昂贵实施或市场失败的风险。
用户组织的管理。总经理发现自己在决定下属的计算机支持方面发挥着越来越大的作用。管理者必须面对的两个关键问题是(1)我如何选择一个符合终端用户需求的系统? (2)就预期的利益而言,所选择的新制度是否合理? 本研究对这两个问题都做出了贡献。在许多情况下,用户对于什么系统最适合他们的需要有很大的不确定性。信息系统开发的一个主要的现有方法是让系统分析员就他们的工作活动和支持需求与用户进行面谈,然后利用这些信息来定义新系统的需求。系统分析过程类似于建议的用户接受测试过程的“机会扫描”过程(图6.1)。一个关键的区别是,尽管今天系统分析员直接从用户采访数据中定义需求,但所建议的用户接受测试过程包括用户采访(“机会扫描”)和需求定义(最后一步)之间的几个额外的用户测试步骤。这些测试步骤旨在确保结果系统与用户需求之间的匹配,因此应该提供相对于现有系统分析方法的优势。关于系统论证,管理人员越来越认识到客观界定系统效益的困难,并采用另一种观点,即应理解、衡量和预测无形的“软”效益,以便为新系统建立业务案例。目前的研究增加了适用于测量主观(感知)用户利益任务的现有工具集。因此,技术接受模型和相关的用户接受测试程序为总经理管理下属终端用户系统的使用提供了优势。
本研究中讨论的用户接受测试过程是对现有工具集的一个潜在的有价值的补充,用于帮助终端用户系统的系统设计和开发过程。一个反映设计选择对用户动机影响的有效的用户动机模型是用户接受测试过程成功的关键因素。以上提出并测试的技术接受模型为建立有效的用户动机模型做出了重要贡献。因此,本研究为建立一个有效的用户动机模型迈出了首要的几步。此外,本研究为研究者在理解用户接受方面的进一步研究奠定了基础。