python计量
文章平均质量分 95
使用python做计量
艽野尘梦better
我们见到的太阳是8分钟之前的太阳,见到的月亮是1.3秒之前的月亮,即使你在我一米之外,我见到的也是3纳秒以前的你。
展开
-
时间序列分析:ARIMA 模型(Python实践)
ARIMA模型全称为自回归差分移动平均模型(Autoregressive Integrated Moving Average Model)。ARIMA模型主要由三部分构成,分别为自回归模型(AR)、差分过程(I)和移动平均模型(MA)。转载 2023-12-20 22:21:31 · 313 阅读 · 0 评论 -
时间序列分析进阶全面指南(附 Python 代码)
时间序列是在规律性时间间隔记录的观测值序列。依赖于观测值的频率,典型的时间序列可分为每小时、每天、每周、每月、每季度和每年为单位记录。有时,你可能也会用到以秒或者分钟为单位的时间序列,比如,每分钟用户点击量和访问量等等。转载 2023-12-20 22:04:19 · 207 阅读 · 0 评论 -
如何简单地理解时间序列分析
时间序列分析的文章更新到这里,总共介绍了两个时间序列分析的体系:时间序列分解模型体系和 AR/MA/ARMA/ARIMA 模型体系。两者的分析原理是不同的,时间序列分解是力求将时间序列分解成不同的变动成分,分析每种变动成分的规律,然后在综合各种成分的规律用于预测;AR/MA/ARMA/ARIMA 模型体系是从时间序列数值本身的相关关系出发,将移动平均技术、相关分析技术和平稳技术(差分)等纳入模型,力求建立时间序列数值之间的回归方程,从而达到预测的目的。转载 2023-12-19 23:26:45 · 263 阅读 · 0 评论 -
使用Python进行方差分析-方差齐性检验、正态性检验、两种方差分析
方差分析是用于分析定类数据与定量数据之间的关系情况。例如研究人员想知道三组学生的智商平均值是否有显著差异。进行方差分析需要满足如下假定:(1)抽取数据的随机性与独立性假定这一假定要求随机抽取样本,确保一组数据一定独立于实验中的任何其他数据。(2)抽取数据的正态性假定这一假定要求在抽样的时候一定要在正态总体中随机抽取数据,即保证抽取的数据服从正态分布。但方差检验对数据的正态性的有一定的耐受能力,只要数据近似正态即可接受。如果数据严重不正态,则可使用非参数检验。原创 2023-06-01 08:30:00 · 4914 阅读 · 5 评论 -
使用python实现固定效应模型
使用固定效应模型一定要重新设置索引,且必须设置两个,(否则会报错:ValueError: The index on the time dimension must be either numeric or date-like)无论是使用时间固定效应还是个体固定效应或双固定效应,这里指定firm和year列为新的索引,另外PanelOLS.from_formula中的EntityEffects和TimeEffects分别指定个体固定效应和时间固定效应,两者都包含在参数中则表示双固定效应模型。原创 2023-05-09 22:26:25 · 6342 阅读 · 4 评论