python基础
文章平均质量分 68
艽野尘梦better
我们见到的太阳是8分钟之前的太阳,见到的月亮是1.3秒之前的月亮,即使你在我一米之外,我见到的也是3纳秒以前的你。
展开
-
关于我使用numpy.random.choice()遇到坑这件事
做仿真时经常使用到随机数,下面是一个场景:使用np.random.choice([0,1],p=[0.5,0.5],size=1)去进行随机的二选一,假设需要随机选择1000次,为了保证结果的稳健性,对前述过程重复50次,为了保证可复现性,对每次重复给予特定的随机数种子,即第n次重复时,设置np.random.seed(n)。我想观察的是1000次随机选择是否存在偏误(倾向于某个选项),因此我对1000次随机选择的结果求平均值,平均值低于0.5表明偏向于选项0,高于0.5表明偏向于选项1。原创 2024-03-05 21:16:15 · 567 阅读 · 1 评论 -
python并发编程(理解多进程,多线程,多任务)
多线程与多进程的基本概念,python中实现多线程与多进程的示例代码。转载 2024-01-07 23:26:57 · 146 阅读 · 0 评论 -
Python 基础:深入了解Python中的GIL(全局解释器锁)(下篇)
在上一篇 GIL 的文章中,感性的了解了 GIL,本篇文章尝试从源码层面来简单解析一下 GIL,这里使用 cpython 3.7 版本的源码 (其实这块没有太大的改变,所以你看 3.5、3.6 的 Python 源码都可以),你可以直接通过 github 浏览相关部分的源码。转载 2024-01-07 23:13:35 · 169 阅读 · 0 评论 -
Python 基础:深入了解Python中的GIL(全局解释器锁)(上篇)
熟悉 Python 的人理应都听过 GIL(Global Interpreter Lock,全局解释器锁) ,大概也知道它就是造成 Python 多线程并发其实是「伪并行」的核心原因,但依旧很多人没有深入其中,所以 HackPython 尝试以上、下两篇文章来阐释 GIL,分别从其表现现象、对应源码以及 Python 对 GIL 改进等方面进行讨论。转载 2024-01-07 23:08:22 · 200 阅读 · 0 评论 -
Python 遍历某文件夹下所有文件夹或文件
os.listdir(path) 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表(不包含子文件夹里的文件夹和文件)os.scandir(path)返回指定文件夹下文件夹和文件对应的os.DirEntry对象的迭代器(不包含子文件夹里的文件夹和文件),运行效率比os.walk高。原创 2024-01-03 23:31:56 · 1080 阅读 · 0 评论 -
几个更优雅、更高效 Pythonic 代码写法!
本文分享几个鲜为人知的 Pythonic 技巧。这些技巧非常有用,但并不广为人知。通过学习和使用这些技巧,可以帮你节省时间和精力,并使你的代码更加优雅和高效。转载 2023-09-06 16:07:03 · 244 阅读 · 0 评论 -
Numpy基础-np.random.shuffle()、np.random.permutation()
Numpy基础-np.random.shuffle()、np.random.permutation()随机排列数组原创 2023-07-09 11:53:12 · 1053 阅读 · 0 评论 -
Numpy基础-np.random.choice()、np.where()
Numpy基础-np.random.choice()、np.where()原创 2023-06-29 19:17:59 · 163 阅读 · 0 评论 -
python的zip()、map()、enumerate()、filter()、apply()函数用法
zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象,这样做的好处是节约了不少的内存。我们可以使用 list() 转换来输出列表。转载 2023-05-20 19:09:47 · 264 阅读 · 0 评论 -
【Python】 垃圾回收机制和 gc 模块
Py 的一个大好处,就是灵活的变量声明和动态变量类型。虽然这使得学习 py 起来非常方便快捷,但是同时也带来了 py 在性能上的一些不足。其中相关内存比较主要的一点就是 py 不会对已经销毁的对象所占据的内存做自动的释放内存空间的工作。转载 2023-04-11 21:37:44 · 313 阅读 · 0 评论