17省4-方格分割 6x6的方格,沿着格子的边线剪开成两部分。 要求这两部分的形状完全相同。 如图:p1.png, p2.png, p3.png 就是可行的分割法。

问题描述

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。

如图:p1.png, p2.png, p3.png 就是可行的分割法。
在这里插入图片描述在这里插入图片描述在这里插入图片描述

试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。

请输出该整数,不要填写任何多余的内容或说明文字。
输入

无输入
输出

一个整数
提示

用printf或cout输出答案

思路

典型的DFS搜索路径题。
如果把样例图案剪开,发现有且只有两个点在边界上,且一定经过 (3,3)点。那么以(3,3)为起点进行深搜,深搜到一个点那么他的中心对称点相当于也搜过了,
如果发现搜到了边界,那么它的中心对称点也到了边界 沿着已经搜过的点剪开,那么
剪开的两个图形为中心对称图形,但要注意最终的结果要除以4
例如:我们从(3,3)点出发一直向右到边界 , 或一直向左,或一直向上,或一直向下剪出来的图形是同一个

代码:

#include <stdio.h>
int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; //四个方向变化坐标 
int ans=0;
int map[7][7]={0};//初始化
void DFS(int x,int y)
{
	if(x==0||x==6||y==0||y==6)
	{
		ans++;
		return;
	}		
	for(int i=0;i<4;i++)//四个方向
	{
		int newx=x+dx[i];
		int newy=y+dy[i];
		if(map[newx][newy]==0)
		{
			map[newx][newy]=1;
			map[6-newx][6-newy]=1;
			DFS(newx,newy);
			map[newx][newy]=0; //用过之后赋回初值 
			map[6-newx][6-newy]=0;
		}	
	}
}
int main()
{
	map[3][3]=1;//从中心开始,3,3表示中心的点
	DFS(3,3);
	printf("%d",ans/4);
	return 0;
}

如有错误或者不当的地方,欢迎指正!期待与您的交流~

在 C++ 中解决这个问题,你需要遍历所有可能的 N(1 到 9),并计算对于每个大小的正方形网格,有多少种方式可以将其沿对角线、水平线或垂直线切割形状相同的部分。这可以通过递归或动态规划来实现。 首先,我们知道单个单元格 (N=1) 只有一种分割方式(无分割)。然后考虑更大的网格,我们可以按照以下步骤: 1. 如果 N = 2,有分割方式:水平方向和竖直方向,因为它们都形个相等的单元格。 2. 对于更大的 N,我们检查是否能将它分个与之前已知尺寸相同的子网格。例如,如果 N=3,我们可以尝试将它分为2x2 的子网格,分别有2分割方式,因此总共有4分割方式(2*2)。 对于 N > 3,我们需要枚举所有可能的分割点,并计算出左右或上下的子网格是否与当前网格相同。这是一种典型的回溯算法,也可以转化为状态转移方程在动态规划中求解。 然而,直接枚举所有的分割点和子网格会非常复杂,随着 N 的增加而指数级增长。实际上,这个问题是关于的连通分量的问题,对于 N > 3,大部分情况会有无穷多种分割方式,因为可以无限地将大网格划分更小的部分。 对于 N <= 9,你可以手动列出所有可能的情况,或者编写一个程序来生并计数这些分割。注意,由于这是一个有限的问题,尽管规模不大,还是需要考虑如何有效地组织数据结构和算法。 以下是简化版的伪代码示例: ```cpp int countDivisions(int N) { if (N == 1) return 1; else if (N == 2) return 2; // 略递归处理其他情况... } // 或者使用动态规划 std::vector<int> dp(10, 0); dp[1] = 1; // 初始化基础情况 for (int i = 2; i <= 9; ++i) { dp[i] = countDivisions(i - 1) * 2; // 计算分割为相同部分的组合 } ``` 最后,为了得到答案,从 dp[N] 得到结果。但是,具体的实现细节取决于 N 的大小以及你想要达到的具体效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值