CS224W课程学习--传统机器学习特征工程-全图层面

CS224W课程学习–传统机器学习特征工程-全图层面

Graph-level Features

Goal:希望提取出的特征可以反映全图特点

Graph Kernel:Key Idea

BoW(Bag-of-Words)思想:向量化,Words可以推广到任意别的特征

image-20230609161620845

image-20230609162212198

Graphlet Features

将BoW思想推广到graphlets

image-20230609162737391

和节点的graphlets的不同点:

(1)可以存在孤立节点

(2)计数全图graphlet个数,而非特定节点领域graphlet个数

image-20230609163051702

Graphlet Kernel

两个图的向量数量积

如果两张图不一样大,那么需要对每个向量做归一化,归一化之后再求数量积

image-20230609165130405

缺点:子图匹配复杂度高,需要硬件等的要求高,耗时长

image-20230609165342951

更加高效的算法:Weisfeiler-lehman Kernel

image-20230609165531577

Color refinement(颜色微调方法)

image-20230609171032416

过程演示:

image-20230609165757531

image-20230609165816255

image-20230609165903381

image-20230609165942310

image-20230609170256839

image-20230609170333516

WL kernel总结:

(1)在计算量上十分高效

(2)与连接的个数线性相关

image-20230609171158500

Summary

image-20230609171444966

Kernel Methods在全图层面的传统机器学习使用广泛

image-20230609171641083

Kernel Methods在全图层面的传统机器学习使用广泛
在这里插入图片描述

image-20230609171716303

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值