CS224W课程学习–传统机器学习特征工程-全图层面
Graph-level Features
Goal:希望提取出的特征可以反映全图特点
Graph Kernel:Key Idea
BoW(Bag-of-Words)思想:向量化,Words可以推广到任意别的特征
Graphlet Features
将BoW思想推广到graphlets
和节点的graphlets的不同点:
(1)可以存在孤立节点
(2)计数全图graphlet个数,而非特定节点领域graphlet个数
Graphlet Kernel
两个图的向量数量积
如果两张图不一样大,那么需要对每个向量做归一化,归一化之后再求数量积
缺点:子图匹配复杂度高,需要硬件等的要求高,耗时长
更加高效的算法:Weisfeiler-lehman Kernel
Color refinement(颜色微调方法)
过程演示:
WL kernel总结:
(1)在计算量上十分高效
(2)与连接的个数线性相关
Summary
Kernel Methods在全图层面的传统机器学习使用广泛
Kernel Methods在全图层面的传统机器学习使用广泛