什么是生成式人工智能​​(Gen AI)?什么是生成式预训练Transformer模型?如何实现GPT模型的训练?

生成式人工智能​

生成式人工智能是指人工智能系统,它可以从简单的文本提示中创建新的内容和构件,如图像、视频、文本和音频。与过去局限于分析数据的人工智能不同,生成式人工智能利用深度学习和海量数据集来产生高质量、类似人类的创造性输出。在实现激动人心的创造性应用的同时,也存在着对偏见、有害内容和知识产权的担忧。总的来说,生成式人工智能代表了人工智能性能的一次重大进化,以类似人类的方式生成新的内容和构件。

什么是生成式人工智能​​(Gen AI)?

生成式人工智能(也称为生成式 AI 或 gen AI)是一种可以创建新的内容和想法(包括对话、故事、图像、视频和音乐)的 AI。它可以学习人类语言、编程语言、艺术、化学、生物学或任何复杂的主题,也可以重复利用已知知识来解决新问题。

例如,学习英语词汇并根据其处理的字词创作一首诗。

您可以将生成式人工智能用于各种用途,例如聊天机器人、媒体创作以及产品开发和设计。

生成式人工智能

(1)聊天机器人和虚拟助手

通过自动化客户服务查询,简化客户自助服务并降低运营成本

(2)对话分析

分析非结构化客户反馈,以识别关键话题、检测情绪并揭示新兴趋势

(3)员工助理

通过对话界面轻松找到准确的信息、获得答案、总结和创建内容

(4)代码生成

根据开发人员的注释和代码提供代码建议,加速应用程序开发

(5)个性化

利用生成式人工智能的力量获得更深入的受众见解、动态内容和个性化互动

(6)生产力和创造力

自动执行任务,让您的员工能够产生更多想法,更快地完成工作,并专注于价值更高的任务


生成式预训练​

生成式预训练 Transformer (GPT) 是一种大型语言模型(LLM),也是生成人工智能的重要框架。它们是用于自然语言处理任务的人工神经网络。GPT 基于Transformer架构,在未标记文本的大型数据集上进行预训练,并且能够生成新颖的类人内容。截至 2023 年,大多数法学硕士都具有这些特征,有时被广泛称为 GPT。

第一个 GPT 由OpenAI于 2018 年推出。OpenAI发布了非常有影响力的GPT基础模型,并按顺序编号,组成其“GPT- n ”系列。由于规模(可训练参数的数量)和训练的增加,每一个都比以前的能力更强。其中最新的GPT-4于 2023 年 3 月发布。此类模型是其更具任务特定性的 GPT 系统的基础,包括针对指令遵循进行微调的模型,这反过来又为ChatGPT 聊天机器人提供动力服务。

**术语GPT(Chat Generative Pre-trained Transformer)**也用于其他人开发的此类模型的名称和描述中。

例如,其他 GPT 基础模型包括EleutherAI创建的一系列模型,以及Cerebras在 2023 年创建的七个模型。 此外,不同行业的公司在各自领域开发了针对特定任务的 GPT,例如Salesforce的“EinsteinGPT”(针对CRM)和Bloomberg的“BloombergGPT”(针对金融)。

什么是生成式预训练Transformer模型?

生成式预训练Transfomer模型是一种基于互联网的、可用数据来训练的、文本生成的深度学习模型。

它可以进行微调以完成各种自然语言处理任务,例如文本生成、代码生成、视频生成、文本问答、图像生成、论文写作、影视创作、科学实验设计等。基于大量语料数据的训练,以生成类似于人类自然语言的文本。

生成式预训练Transformer的基本原理

生成式预训练Transformer主要由输入层编码器解码器注意力机制等部分组成。其中,编码器和解码器是Transformer的核心部分,通过自注意力机制和跨注意力机制实现对输入数据的特征提取和信息转换。在训练过程中,生成式预训练Transformer通过预测目标序列中的下一个词或像素,不断优化模型参数,以提高预测准确率。

生成式预训练Transformer的训练方法
生成式预训练Transformer的训练方法主要包括两大类:自监督学习和无监督学习。

生成式预训练Transformer的实践应用

生成式预训练Transformer在自然语言处理和计算机视觉等领域具有广泛的应用。在自然语言处理方面,生成式预训练Transformer可以用于文本分类、情感分析、机器翻译等任务。

例如,在机器翻译任务中,可以使用生成式预训练Transformer将一种语言的句子自动翻译成另一种语言,并保证翻译的准确性和流畅性。在计算机视觉方面,生成式预训练Transformer可以用于图像分类、目标检测、图像生成等任务。

例如,在图像分类任务中,可以使用生成式预训练Transformer对图像进行特征提取和分类,以提高分类准确率。

Transformer模型

2017年,Google在论文 Attention is All you need 中提出了 Transformer 模型,其使用 Self-Attention 结构取代了在 NLP 任务中常用的 RNN 网络结构。相比 RNN 网络结构,其最大的优点是可以并行计算。
Generative Pre-trained Transformer(GPT)模型技术初探

GPT模型简介

GPT(Generative Pre-trained Transformer)是由OpenAI公司开发的一系列自然语言处理模型,采用多层Transformer结构来预测下一个单词的概率分布,通过在大型文本语料库中学习到的语言模式来生成自然语言文本。GPT系列模型主要包括以下版本:

(1)GPT-1

发布于2018年,参数规模为1.17亿。模型采用Transformer进行特征抽取,首次将Transformer应用于预训练语言模型。预训练的语料库包括英文维基百科、WebText等大规模文本数据。GPT-1是一个单向语言模型,即它只能根据上下文来生成接下来的文本。

(2)GPT-2

发布于2019年,参数规模为15亿。与GPT-1相比,参数规模大了10倍以上,GPT-2生成的文本质量更高,更加自然和流畅,可以生成更长的文本段落。该模型在生成文本方面表现出色,能够编故事甚至生成假新闻,但由于其潜在的滥用风险,OpenAI公司选择不公开发布其完整参数和源代码。

(3)GPT-3

发布于2020年,参数规模为1750亿。该模型在自然语言处理方面的表现十分出色,可以完成文本自动补全、将网页描述转换为相应代码、模仿人类叙事等多种任务。GPT-3可以通过少量的样本进行零样本学习,即在没有进行监督训练的情况下,可以生成合理的文本结果。

GPT-3的出现标志着语言模型的发展进入了一个新的阶段,其生成的文本质量已经接近人类水平,在众多领域具有应用潜力,隐藏的伦理安全问题需引起关注和重视。

(4)GPT-4+

发布于2023年。GPT-4是一个大型多模态模型,支持图像和文本输入,再输出文本回复。

虽然在许多场景中其表现与人类存在差距,但GPT-4在某些专业和学术测试中表现出拥有专业人士的水平:它通过了模拟美国律师资格考试,且成绩在应试者中排名前10%左右;在SAT阅读考试中得分排在前7%左右。

模型结构
GPT 使用 Transformer 的 Decoder 结构,并对 Transformer Decoder 进行了一些改动,原本的 Decoder 包含了两个 Multi-Head Attention 结构,GPT 只保留了 Mask Multi-Head Attention。

如何实现GPT模型的训练?

生成式预训练Transformer的训练方法主要包括两大类:自监督学习无监督学习

自监督学习是指利用已有数据生成伪标签,通过最小化伪标签与真实标签之间的损失来训练模型。

无监督学习则是指直接利用无标签数据进行模型训练,常见的无监督学习算法包括对比学习、自编码器和变分自编码器等。在实际应用中,根据不同的任务需求选择合适的训练方法。

可以通过以下步骤实现GPT模型的训练。

(1)准备数据集

包括文本数据和相应的类别标签。

(2)准备模型

加载预训练的BERT模型,并设置模型的参数。

(3)准备数据

将文本数据转换为模型的输入格式,并使用模型的tokenizer对文本进行编码。

(4)训练模型

使用给定的训练数据集进行批量训练,并使用loss函数计算损失,然后根据梯度更新模型的参数。

(5)评估模型

使用测试数据集评估模型的性能,以衡量模型的性能。

(6)测试生成文本

使用训练好的模型生成文本,并评估生成的文本的质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未禾

您的支持是我最宝贵的财富!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值