约瑟夫环的Java解法
题目:有100个人围成一个圈(编号0-99),从第0号的人开始从1报数,凡报到3的倍数的人离开圈子,然后再数下去,直到最后只剩一个人为止,问此人原来的位置是多少号?
解题思路:题目中一共有100个人,每个人只有两种状态,即在环中和不在环中,因此我们可以创建一个长度为100的boolean类型的数组。首先,100个人都在圈中,所以,我们初始化数组,让所有的数据都为true,然后通过计数器去判断循环报数时是否达到3,用索引去记录当前报数时此人在圈中的位置;当总人数大于1时执行循环,每当索引等于100时初始化索引;直到总人数为1,即数组中只有一个数据为true时退出循环,然后用for循环来判断当前为true的数据在数组中所在的位置,即最后一人在环中的编号。
public class JosephRing {
public void josephRing(int n,int k){
boolean[] arr = new boolean[n];
/**初始化数组(所有人都在圈中)*/
for (int i = 0; i < arr.length; i++){
arr[i] = true;
}
/**初始化总人数*/
int len = arr.length;
/**声明计数器,统计是否到达k*/
int count = 0;
/**初始化索引,记录当前数到圈中的位置*/
int index = 0;
/**开始循环报数*/
while(len > 1){
/**判断当前位置的人是否在圈中*/
if(arr[index]){
/**计数器递增*/
count++;
/**判断是否到达k*/
if(count == k){
/**人数减少*/
len--;
/**标记此人离开圈子*/
arr[index] = false;
/**计数器归0*/
count = 0;
}
}
/**数组索引递增*/
index++;
if(index == arr.length){
index = 0;
}
}
for (int i = 0; i < arr.length; i++){
if(arr[i]){
System.out.println(i);
break;
}
}
}
public static void main(String[] args) {
JosephRing j = new JosephRing();
j.josephRing(100,3);
}
}
程序运行结果为:
90
运用简单的循环即可完成问题的求解,就我个人觉得,这是一个思维的转换,求解的复杂程度,从数组的构建开始就已经决定。对初步接触Java的人来说,思维的变更是必需经历的环节,我觉得这道题就是一个非常非常浅显的表现。最后,这是我个人对所学内容的一个小总结,如有哪里出错或者其他问题,还请大家批评教育,非常感谢!!!