约瑟夫环问题的Java解法

约瑟夫环的Java解法

题目:有100个人围成一个圈(编号0-99),从第0号的人开始从1报数,凡报到3的倍数的人离开圈子,然后再数下去,直到最后只剩一个人为止,问此人原来的位置是多少号?

解题思路:题目中一共有100个人,每个人只有两种状态,即在环中和不在环中,因此我们可以创建一个长度为100的boolean类型的数组。首先,100个人都在圈中,所以,我们初始化数组,让所有的数据都为true,然后通过计数器去判断循环报数时是否达到3,用索引去记录当前报数时此人在圈中的位置;当总人数大于1时执行循环,每当索引等于100时初始化索引;直到总人数为1,即数组中只有一个数据为true时退出循环,然后用for循环来判断当前为true的数据在数组中所在的位置,即最后一人在环中的编号。

public class JosephRing {
	
	public void josephRing(int n,int k){
		boolean[] arr = new boolean[n];
		/**初始化数组(所有人都在圈中)*/
		for (int i = 0; i < arr.length; i++){
			arr[i] = true;
		}
		
		/**初始化总人数*/
		int len = arr.length;
		/**声明计数器,统计是否到达k*/
		int count = 0;
		/**初始化索引,记录当前数到圈中的位置*/
		int index = 0;
		
		/**开始循环报数*/
		while(len > 1){
			/**判断当前位置的人是否在圈中*/
			if(arr[index]){
				/**计数器递增*/
				count++;
				/**判断是否到达k*/
				if(count == k){
					/**人数减少*/
					len--;
					/**标记此人离开圈子*/
					arr[index] = false;
					/**计数器归0*/
					count = 0;
				}
			}
			/**数组索引递增*/
			index++;
			if(index == arr.length){
				index = 0;
			}
		}
		for (int i = 0; i < arr.length; i++){
			if(arr[i]){
				System.out.println(i);
				break;
			}
		}
	}

	public static void main(String[] args) {
		
		JosephRing j = new JosephRing();
		j.josephRing(100,3);

	}

}

程序运行结果为:

90

运用简单的循环即可完成问题的求解,就我个人觉得,这是一个思维的转换,求解的复杂程度,从数组的构建开始就已经决定。对初步接触Java的人来说,思维的变更是必需经历的环节,我觉得这道题就是一个非常非常浅显的表现。最后,这是我个人对所学内容的一个小总结,如有哪里出错或者其他问题,还请大家批评教育,非常感谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值