移除最多的同行或同列石头

这篇博客介绍了两种算法解法——深度优先搜索(DFS)和并查集,来解决同一行或同一列的石头移除问题。通过建立图或维护联通组件,确定可以消除的石头数量。这两种方法都有效地减少了复杂度,实现了高效的求解过程。
摘要由CSDN通过智能技术生成

移除最多的同行或同列石头

刚学会markdown拿来练手

解法1:dfs遍历

Cow Picnic S
这两道题基本上是一样的,都是进行遍历查找。
将在同一行或者同一列的点建立成一张图,易知对于每一个联通的块,都可以将其逐渐删成一个点。因此,最后统计一下有多少个联通的块,就能知道最多可以去掉多少个点了。

class Solution {
public:
    void dfs(vector<vector<int> >&graph, int x, vector<int>& vis){
        vis[x] = true;
        for(auto &y : graph[x])
            if(!vis[y])
                dfs(graph, y, vis);
    }
    int removeStones(vector<vector<int>>& stones) {
        int n = stones.size();
        vector<vector<int> > edge(n);
        for(int i = 0; i < n; i ++){
            for(int j = 0; j < n; j ++){
                if(stones[i][0] == stones[j][0] || stones[i][1] == stones[j][1])
                    edge[i].push_back(j);
            }
        }
        vector<int>vis(n);
        int cnt = 0;
        for(int i = 0; i < n; i ++){
            if(!vis[i]){
                cnt ++;
                dfs(edge, i, vis);
            }
        }
        return n - cnt;
    }
};

解法2:并查集

对于一个点,如果这个点的行和列都在之前还没有出现过,那么就将这个点设置为祖先节点,对于后续的一系列点如果和这个点在同一行或同一列,那么就把这些点连接到一起。
后面所有点同理。
最后只需要遍历一遍,统计一下有多少个并查集块,然后用总的点数一减就好了。
代码如下

class Solution {
public:
    void init(vector<int>& fa, int n){
        for(int i = 0; i < n; i ++)
            fa[i] = i;
    }
    int find(vector<int>&fa, int x){
        if(x == fa[x])
            return x;
        else return fa[x] = find(fa, fa[x]);
    }
    int removeStones(vector<vector<int>>& stones) {
        int n = stones.size();
        vector<int>fa(n);
        init(fa, n);
        for(int i = 0; i < n; i ++){
            for(int j = i + 1; j < n; j ++){
                if(stones[i][0] == stones[j][0] || stones[i][1] == stones[j][1])
                    if(find(fa, i) != find(fa, j))
                        fa[i] = fa[j];
            }
        }
        int cnt = 0;
        for(int i = 0; i < n; i ++)
            if(fa[i] == i)
                cnt ++;
        return cnt;
    }
};

有一说一,markdown还真挺好用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值