动态规划02-背包问题

01背包

问题: N N N个物品,有容量为 V V V的背包,第 i i i个物品的体积为 v i v_i vi,价值为 w i w_i wi每个物品最多被挑选一次,如何使在不超过背包的容积的情况下选择出总价值最大的挑选情况.

f [ i ] [ j ] f[i][j] f[i][j]表示从前 i i i个物品中进行挑选,体积不超过 j j j的所有选法中的最大价值

f [ i ] [ j ] = { f [ i − 1 ] [ j − v i ] 选 择 第 i 个 物 品 f [ i − 1 ] [ j ] 不 选 第 i 个 f[i][j]=\begin{cases} f[i-1][j-v_i] & 选择第i个物品 \\ f[i-1][j] & 不选第i个 \end{cases} f[i][j]={f[i1][jvi]f[i1][j]ii

	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=m;j++)
		{
			f[i][j]=f[i-1][j];//不选第i个
			if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]); //选第i个 
		}
	}

优化

考虑使用滚动数组进行优化,可以发现对于 f [ i ] f[i] f[i]状态,其只用到了 f [ i − 1 ] f[i-1] f[i1]这个状态, f [ 0 到 i − 2 ] f[0到i-2] f[0i2]未使用到,同时第二维状态总是 ≤ j \leq j j,因此我们可以将数组优化到一维表示,同时因为计算 f [ i ] [ j ] f[i][j] f[i][j]时需要用到, f [ i − 1 ] [ j − v [ i ] ] f[i-1][j-v[i]] f[i1][jv[i]],我们需将j从大到小遍历.

	for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=v[i];j--)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }

完全背包

问题: N N N个物品,有容量为 V V V的背包,第 i i i个物品的体积为 v i v_i vi,价值为 w i w_i wi每个物品可被挑选无限次,如何使在不超过背包的容积的情况下选择出总价值最大的挑选情况

f [ i ] [ j ] f[i][j] f[i][j]表示从前 i i i个物品中进行挑选,体积不超过 j j j的所有选法中的最大价值.

可以很明显的思考得出,我们可以通过遍历,对每种物品采用选择k个的情况,得出最终解

	for(int i=i;i<=n;i++){
		for(int j=0;j<=m;j++){
			for(int k=0;k*v[i]<=j;k++){
				f[i][j] = max(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);
			}
		}
	}

优化

我们对状态转移公式进行推导:

f [ i ] [ j ] = M a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v I ] + w i , f [ i − 1 ] [ j − 2 v i ] + 2 w i , f [ i − 1 ] [ j − 3 v i ] + 3 w i , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ) f[i][j]=Max(f[i-1][j],f[i-1][j-v_I]+w_i,f[i-1][j-2v_i]+2w_i,f[i-1][j-3v_i]+3w_i,·······) f[i][j]=Max(f[i1][j],f[i1][jvI]+wi,f[i1][j2vi]+2wi,f[i1][j3vi]+3wi,)

f [ i ] [ j − v ] = M a x ( f [ i − 1 ] [ j − v ] , f [ i − 1 ] [ j − 2 v I ] + w i , f [ i − 1 ] [ j − 3 v i ] + 2 w i , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ) f[i][j-v]=Max(f[i-1][j-v],f[i-1][j-2v_I]+w_i,f[i-1][j-3v_i]+2w_i,·······) f[i][jv]=Max(f[i1][jv],f[i1][j2vI]+wi,f[i1][j3vi]+2wi,)

在这里插入图片描述

对状态转移公式发现,箭头指向式子相较于原式子少了一个 w i w_i wi,且 f [ i ] [ j ] f[i][j] f[i][j]可由 f [ i ] [ j − v ] f[i][j-v] f[i][jv]推导得出,可得最终式:

f [ i ] [ j ] = M a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − v i ] + w i ) f[i][j]=Max(f[i-1][j],f[i][j-v_i]+w_i) f[i][j]=Max(f[i1][j],f[i][jvi]+wi)

for(int i=1;i<=n;i++)
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];
			if(j>=v[i]) f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
		}

我们可以发现得出的式子与我们01背包得出的式子有点相似,不同之处在于算 f [ i ] [ j ] f[i][j] f[i][j]时需要用到的是 f [ i ] [ j − v [ i ] ] f[i][j-v[i]] f[i][jv[i]],我们需将j从小到大遍历.

for(int i=1;i<=n;i++)
		for(int j=v[i];j<=m;j++)
			f[j]=max(f[j],f[j-v[i]]+w[i]);	

多重背包

问题: N N N个物品,有容量为 V V V的背包,第 i i i个物品的体积为 v i v_i vi,价值为 w i w_i wi每个物品最多可被挑选 s i s_i si次,如何使在不超过背包的容积的情况下选择出总价值最大的挑选情况.

我们可以发现,多重背包相比于完全背包问题,其实就是将无限次改为了有限次,那么即在枚举k时,我们可以再将k做限制即 k ≤ s i k\leq s_i ksi.

   for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            for(int k=0;k<=s[i]&&k*v[i]<=j;k++){
                f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
            }
        }
    }

优化

采用二进制优化,可以思考将一组物品集合在一起认为是一件物品。优化后即变成了01背包问题.

    for(int i=1;i<=n;i++){
        int k=1;
        int a,b,c;
        cin>>a>>b>>c;
        while(k<=c){
            cnt++;
            v[cnt]=a*k;
            w[cnt]=b*k;
            c-=k;
            k*=2;
        }
        if(c>0){
            cnt++;
            v[cnt]=c*a;
            w[cnt]=c*b;
        }
    }
    n=cnt;
    for(int i=1;i<=n;i++){
        for(int j=m;j>=v[i];j--){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }

分组背包

问题:有 N N N组物品和一个容量是 V V V的背包.每组物品有若干个,同一组内的物品最多只能选一个.每件物品的体积是 v i j v_{ij} vij,价值是 w i , j w_{i,j} wi,j,其中 i i i是组号, j j j是组内编号.求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大.

我们可以考虑对每组物品,选择其中一个或者不选,进行枚举即可

    for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            f[i][j]=f[i-1][j];  //不选
            for(int k=0;k<s[i];k++){//选
                if(j>=v[i][k])     f[i][j]=max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]);  
            }
        }
    }

优化

因为计算 f [ i ] [ j ] f[i][j] f[i][j]时只用到了 f [ i − 1 ] [ ] f[i-1][ ] f[i1][],所以可以仿照01背包的套路逆向枚举体积,从大到小

    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= 0; j -- )
            for (int k = 0; k < s[i]; k ++ )
                if (v[i][k] <= j)
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值