青蛙的约会(扩展欧几里得)

两只青蛙约定沿同一纬度线朝西跳,寻找见面的可能。题目要求根据青蛙的出发点、跳跃距离及纬度线长度判断它们是否会相遇。解题关键在于利用扩展欧几里得算法解决同余方程,找到跳跃次数。当方程无解时,表示青蛙无法相遇,输出"Impossible"。
摘要由CSDN通过智能技术生成

题目链接

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题解:

 

解题思路:

首先设跳的次数为t。如果两只青蛙能够相遇则满足 x + m*t =  y + n*t (mod L)。

变换成ax + by= m的形式就变成了(m-n)*t = y-x (mod L)。

再次变换得到 (m-n)*t + k*L = y-x (mod L)  //k为任意整数值//

令a=m-n,b=L,c=y-x,gcd=gcd(a,b)。上式就很和谐地变成了a*t+b*k=c (mod L)。

这里注意,扩展欧几里得定理规定c必须是gcd(a,b)的倍数才行,也就是c/gcd=q, q必须是整数,如果不是,那么次方程无解。

用扩展欧几里得算法可以求解a*t+b*k=gcd (mod L),可以得到t,但是注意,这个方程的右边是gcd(a,b),不是原方程的右边c,因此把a*t+b*k=gcd (mod L)等式两边都乘以c/gcd这样就变成了a*t*c/gcd+b*k*c/gcd = c。

于是真正的 t 就是a*t+b*k=gcd (mod L)用欧几里得算法求得的t再乘以t*c/gcd。

之前说过,如果c不是gcd的整数倍的话,那么此方程无解,这也就是青蛙碰不到面,输出"Impossible"的情况。

AC代码:

//#include <bits/stdc++.h>
#include <algorithm>
#include <iostream>

using namespace std;

typedef long long ll;

ll exgcd(ll a,ll b,ll &x,ll &y)
{
	if(b==0)
	{
		x=1;y=0;
		return a;
	}
	ll r=exgcd(b,a%b,x,y);
	ll tmp=y;
	y=x-(a/b)*y;
	x=tmp;
	return r;
}

int main()
{
//	freopen("input.txt","r",stdin); 
    ll x,y,m,n,l;
    cin>>x>>y>>m>>n>>l;
    ll a=m-n;
    ll b=l;
    ll c=y-x;//先把a,b,c等定义好,比较直观方便,也是很优秀了
    ll X,Y;
    ll gcd=exgcd(a,b,X,Y);
    if(c%gcd!=0) cout<<"Impossible"<<endl;
    else 
    {
    	ll r=c/gcd;
    	cout<<(X*r%b+b)%b<<endl;
	}//这里如果只求你元的话X是不用再%一个b的,但是由于X要乘以r,可能非常大吧,根据同余定理,那就顺便取个余吧
    
	return 0;
}

宠辱不惊,闲看庭前花开花落。去留无意,漫随天外云卷云舒。--《菜根谭》

不以得喜,不以失惊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值