两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
题解:
解题思路:
首先设跳的次数为t。如果两只青蛙能够相遇则满足 x + m*t = y + n*t (mod L)。
变换成ax + by= m的形式就变成了(m-n)*t = y-x (mod L)。
再次变换得到 (m-n)*t + k*L = y-x (mod L) //k为任意整数值//
令a=m-n,b=L,c=y-x,gcd=gcd(a,b)。上式就很和谐地变成了a*t+b*k=c (mod L)。
这里注意,扩展欧几里得定理规定c必须是gcd(a,b)的倍数才行,也就是c/gcd=q, q必须是整数,如果不是,那么次方程无解。
用扩展欧几里得算法可以求解a*t+b*k=gcd (mod L),可以得到t,但是注意,这个方程的右边是gcd(a,b),不是原方程的右边c,因此把a*t+b*k=gcd (mod L)等式两边都乘以c/gcd这样就变成了a*t*c/gcd+b*k*c/gcd = c。
于是真正的 t 就是a*t+b*k=gcd (mod L)用欧几里得算法求得的t再乘以t*c/gcd。
之前说过,如果c不是gcd的整数倍的话,那么此方程无解,这也就是青蛙碰不到面,输出"Impossible"的情况。
AC代码:
//#include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;y=0;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll tmp=y;
y=x-(a/b)*y;
x=tmp;
return r;
}
int main()
{
// freopen("input.txt","r",stdin);
ll x,y,m,n,l;
cin>>x>>y>>m>>n>>l;
ll a=m-n;
ll b=l;
ll c=y-x;//先把a,b,c等定义好,比较直观方便,也是很优秀了
ll X,Y;
ll gcd=exgcd(a,b,X,Y);
if(c%gcd!=0) cout<<"Impossible"<<endl;
else
{
ll r=c/gcd;
cout<<(X*r%b+b)%b<<endl;
}//这里如果只求你元的话X是不用再%一个b的,但是由于X要乘以r,可能非常大吧,根据同余定理,那就顺便取个余吧
return 0;
}
宠辱不惊,闲看庭前花开花落。去留无意,漫随天外云卷云舒。--《菜根谭》
不以得喜,不以失惊。