雪花算法生成唯一id

本文主要介绍了如何在项目中利用雪花算法(SnowFlake)生成全局唯一的ID,并强调了雪花算法的结构特点,如64位整数、时间戳、序列号等。文中提到雪花算法能确保分布式系统中的ID不重复,并指出SpringBoot已有整合。此外,推荐使用Hutool工具包来简化雪花算法的实现,Hutool提供了丰富的Java工具类库,包括加密解密等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(文章主要是为自己记录在项目中用到的技术,文章内容多为摘要)

现在分布式系统最常用的生成全局唯一ID的方法是雪花算法snowFlake。
雪花算法生成的结果是一位64bit的整数,为一个long类型(转换成字符串最多为19位)
雪花算法结构图如下

  • 从左到右,第一位为符号位,0表示正,1表示符,不用。

  • 时间戳(毫秒转化为年):2^41/(3652460601000)=69.73年。说明雪花算法可表示的范围为69年(从1970年开始),说明雪花算法能用到2039年。

  • 12bit-序列号:表示每个机房的每个机器每毫秒可以产生2^12-1(4095)个不同的ID序号
    雪花算法生成的ID整个分布式系统不会重复(因为有workerId和datacenterId)

 SpringBoot中已经整合了snakeFlake,不过我们可以用一个很好用的工具包Hutool。

Hutool是一个Java工具包类库,对文件、流、加密解密、转码、正则、线程、XML等JDK方法进行封装,组成各种Util工具类。

Hutool中已经封装好了雪花算法,我们只需要自己封装一个Utils,代码如下:

### Java 实现雪花算法生成唯一ID #### 1. 雪花算法简介 雪花算法是一种用于分布式系统中高效生成全局唯一ID的方法。该方法由Twitter开源,能够生成不重复的、有序的64位整数型ID,在高并发场景下依然保持良好的性能[^3]。 #### 2. Snowflake ID结构解析 一个标准的Snowflake ID是由多个部分组成: - **时间戳(41 bit)**:记录的是从纪元(通常是20221月1日)到当前时刻经过了多少毫秒; - **数据中心ID (5 bit)**:用来区分不同的数据中心; - **机器节点ID (5 bit)**:在同一数据中心内进一步细分不同服务器实例; - **序列号(12 bit)** :同一台机器上每毫秒内的计数值; 这种设计使得即使在网络分区的情况下也能保证全球范围内的唯一性[^1]。 #### 3. Java代码实现 下面是一个简单的Java版本的SnowFlake类定义及其使用方式: ```java public class SnowflakeIdWorker { private final long workerId; private final long datacenterId; // 时间偏移量,默认设置为2022-01-01 private static final long twepoch = 1640995200000L; // 各个字段所占bit数 private static final int WORKER_ID_BITS = 5; private static final int DATACENTER_ID_BITS = 5; private static final int SEQUENCE_BITS = 12; // 最大支持machine数量=31, 即允许的最大dataCenter数量也是31 public static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS); public static final long MAX_DATACENTER_ID = ~(-1L << DATACENTER_ID_BITS); // 移动位置计算 private static final long WORKER_ID_SHIFT = SEQUENCE_BITS; private static final long DATACENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS; private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATACENTER_ID_BITS; private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS); private long sequence = 0L; private long lastTimestamp = -1L; /** * 构造函数初始化worker id 和 data center id. */ public SnowflakeIdWorker(long workerId,long datacenterId){ if(workerId > MAX_WORKER_ID || workerId < 0){ throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",MAX_WORKER_ID)); } if(datacenterId > MAX_DATACENTER_ID || datacenterId < 0){ throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",MAX_DATACENTER_ID)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 获取下一个ID */ synchronized public long nextId() { long timestamp = timeGen(); if(timestamp < lastTimestamp){ try{ throw new Exception("Clock moved backwards.Refusing to generate id for "+ (lastTimestamp-timestamp)+" milliseconds"); }catch(Exception e){ System.err.println(e.getMessage()); } } if(lastTimestamp == timestamp){ sequence = (sequence + 1) & SEQUENCE_MASK; if(sequence == 0){ timestamp = tilNextMillis(lastTimestamp); } }else{ sequence = 0L; } lastTimestamp = timestamp; return ((timestamp - twepoch) << TIMESTAMP_LEFT_SHIFT)| (datacenterId << DATACENTER_ID_SHIFT) | (workerId << WORKER_ID_SHIFT) | sequence; } protected long tilNextMillis(final long lastTimestamp) throws InterruptedException { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { Thread.sleep(1); timestamp = timeGen(); } return timestamp; } protected long timeGen(){ return System.currentTimeMillis(); } } ``` 此段程序展示了如何创建`SnowflakeIdWorker`对象并调用其`nextId()`方法来获取新的唯一ID
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值