题目
还是来自于前几日闲来无事上网冲浪看到的有趣的题:
,对任意的自然数n,是否存在一个
的2-划分
、
,使得以下性质成立:
其实原题或许有些微不严谨,因为0的零次幂严格来说是没有定义的,但是在此处它想表述的意思大概就是,两个集合、
的数的个数是相等的。
用简单的话来说,就是要把从0到的自然数划分成两块儿,保证两块的数的个数相等、直接加和相等、平方和相等、立方和相等……直到n次方的和,都是相等的。这无疑是一个非常有意思的性质,也很难让人相信能始终找到一个划分使得它是成立的。
那就来试试吧!
朴素尝试——试探敌情
首先,那么
,只需要满足
和
的元素个数相等。只有一个划分满足要求,也就是显然的:
当然反过来也是没问题的,但这种情况从划分来看没有什么讨论价值,之后也不做讨论。
时,
,需要满足
和
的元素个数相等,且加和相等,做熟了小学题的人也都能写出来:
时,
,情况稍微复杂一点了,我们需要满足
和
的元素个数相等,且加和相等、平方和相等。平方和相等可不好办!除了暴力拆解,我们也可以列个方程试试。首先每边一定是四个元素,所以可以设置四个未知数,加和相等、平方和相等,所以两边的和都是总和的一半,总的加和是28,平方和是140,所以有:
如果这个划分是存在的,那么0肯定在某一边,我们就考虑那一边,假设,于是方程进一步简化。
接下来这个方程的解法,就随心所欲了,反正解一定得是整数,可以巧凑可以硬凑,例如说从剩下的7个数中随机选个数代入(这就意味着这个数和0在一个集合里,随机选中的概率还是有接近一半的),然后方程立即可解,只要满足要求就可以。例如说选
,那由加和的限制就有
,但它的平方和不满足第二个方程;选
,由加和的限制就有
,还是不满足。选
,有两种可能,我们发现
恰好能成,因此
至少是个可行的解。至于,可以试试,然后就会发现不满足条件。
还要继续尝试吗?太可怕了吧!n=3,接下来我们要面对的就是立方和,同时数也会变成0~15。其实对于每一个n,我们都有n-1个方程(t=0的情况不算),但却有个未知数,就算除去一个0,也还有
个,随着n的增大,后面未知数和方程的数量关系会越来越悬殊,根本没办法试凑了。所以,我们只好看向手里已有的东西,试图在里面找找规律了。最理想的当然是把这个划分直接写出来,然而很多时候这种题目既然只让你证明“存在性”,那就难得会让你有能力求出,或者求出来的解有特别多。
寻找规律——分析情报
我们来找规律吧:
……
发现了什么?至少在我们尝试的范围内,好像每一个和
都是在上一个
和
的基础上再加入几个数产生的!单凭这一点就很有启发性了,至少我们得沿着这一条路试试。于是我们再一次看向原本遥不可及的n=3,从n=3继续寻找思路。
我们假设和
都是在
和
的基础上,加入几个数产生的。那么首先
比起
,增加的数是:
,我们要分配到
和
中去,首先要满足,个数要相等,都分配4个;然后要满足加和相等,这个也不难,因为增加的数可以写成:
就加和这一点来看,我们仿照n=2时的分法,至少是绝对可行的:
这两个集合的加和一定是相等的,因为那些增加的“”完全互相抵消了,除此之外还有很多种分法,其实无异于求
分成两个加和相等的集合的分法罢了。
接下来我们进行第二轮筛选:还要满足平方和相等。
这时候我们还不确定满足加和相等的分法中,哪种能继续“挺下去”,所以还是把分法写成这样子吧:
我们要满足的加和相等条件是:
然后我们再来考虑平方和相等。因为和
都是在
和
的基础扩张产生的,所以
和
中原本属于
和
的元素一定满足平方和相等,因此我们只要考虑新加元素的平方和相等就行了。我们尝试计算平方和:
希望这样一个横排的式子不会看得眼花缭乱,但我们必然可以敏锐察觉一些东西:要让它们相等,似乎没那么难!前面已经有
那么上面两个平方和式子一对比,就发现似乎只需要
就够了!
再想想,我们之前选择的时候,貌似也完全是这样的要求!我们求出了唯一的解:
,那么这里的分法瞬间也可以确定唯一,正是:
于是之前所忧虑的一切关于分法太多的问题化为乌有,现在唯一的不确定性就是:上面两个集合具体怎么分配到和
中去?还有一个问题,这在筛选中幸存下来的分法能满足立方和相等吗?别忘了我们终究还要解决t=3的问题!而t=3我们之前都没有讨论过,
和
也不满足t=3时的立方和相等。
暂且再把它蒙上一层面纱,我们来算算立方和。我们把、
中原有的元素记作
、
,那么立方和分别是
分法已经满足、
,于是上面两个立方和要相等,只需要:
怎么样?回头看看我们已经确定的两种分法,我们发现和
,其实形式上已经确定必然与
和
相同,那只需要把两者对换一下,让
和
相同,
和
相同,那上面的立方和瞬间就解决了!也就是让
那么问题就解决了,n=3完美结束!
还要讨论n=4吗?不需要了,经过上面的历程,我们已经找到了分配的规律,当然这个规律在n=2到n=3的跨越过程中可行,在更高阶次是否可行呢?数学直觉应当能够判断,是可行的!我们只需要证明一下。
严谨证明——正面出击
再回顾一下,我们的分法是,和
都是在上一个
和
的基础上扩张,而这个扩张的集合
和
满足,
就是把
的元素都加上
,
就是把
的元素都加上
。
用二进制表示,假设0表示一个元素归属于,1表示归属于
,那么
各个元素的归属分别是这样:
n=0: 0, 1
n=1: 0, 1, 1, 0
n=2: 0, 1, 1, 0, 1, 0, 0, 1
n=3: 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
……
也就是说,新加入的元素就是原来元素全部取反。似乎非常对称,具有某种对称性呢。但是我们就单纯把我们的任务讨论完吧。
用严谨的数学语言来表达,我们的取法是:
容易证明这样的集合必然满足,是
的2-划分。
用数学归纳法来证明我们方法的可行性,对于取
,对于
也是满足条件的(事实上
我们都证明了)。
假设对于,
和
是满足要求的,那么对于
,
和
的元素个数容易说明是相等的,而对于任意
,有:
其中第三行到第四行,正是运用了结论对于假设(t=0表示元素个数相等):
而我们由此证明了:
因而结论对于也是成立的,由数学归纳法可以导出,结论对于任意自然数n都成立,也就是说我们的取法是可以满足条件的,始终存在
的2-划分
、
使得上述性质成立。
结语
再回过头看,似乎这一次的证明也一样,非常简单,显然,早知道不需要之前的啰嗦了,直接列个式子,五行的计算就解决了嘛!或许吧,有些天才的灵光一闪,对普通人永远遥不可及,而这样的证明甚至算不上所谓灵光。但是,还是一样的观点,对于想要一步步寻宝的人来说以及对于想要分享的人来说,这或许都是非常美妙的体验,那么就值得一写,值得一叙。当然,笔者相信还是有人因为对题意难以理解,而遵照同样的思路最终解答出来的。笔者的思路就是这样,如果能产生共鸣,那实在是一件幸事。
最后一点小尾声:这样的划分,唯一吗?从我们对n=0,n=1,n=2的尝试看来,似乎是唯一的,而n=3在应用我们的小猜想后,也是只有唯一的划分。如果我们要求和
都是在上一个
和
的基础上扩张,那么从证明来看它确实是唯一的划分,但如果不要求呢?那么多的未知数以及那么少的约束方程,真的唯一吗?笔者不知道,没有尝试证明。或许,只要再翻过一座小山,就能看见大海吧。