表征与特征的关系

目录

一.声明:

二.特征

2.1特征:

2.2特征向量:

三.表征

3.1表征

3.2表征学习

四.表征与特征的关系


一.声明:

不全是自己的理解,也有些是摘抄的。

二.特征

2.1特征:

在机器学习中,特征是被观测对象的一个独立可观测的属性或者特点。比如识别水果的种类,需要考虑的特征(属性)有:大小、形状、颜色等。要识别一个人是谁,可以用他的走路姿势、说话语气等来衡量。特征一般用数值而非文字等其他形态,主要是为了处理和统计分析的方便。特征的特点是:有信息量,区别性,独立性。背后的思路是通过一个抽象、简化的数学概念来代表复杂的事物。

2.2特征向量:

一个特征不足以代表一个物体,所以机器学习中使用特征的组合--特征向量。它是一个 n 维的数值向量,可以用来代表某个东西。比如人脸识别中,使用256维度的向量来代表一个人的面部特征。

三.表征

3.1表征

将图像经过卷积操作得到的结果。

3.2表征学习

在机器学习领域,表征学习(或表示学习)是一种将原始数据转换成为更容易被机器学习应用的数据的过程。对于输入数据,对其进行学习得到新的数据或者对原始数据进行选择得到新的数据都称为表征学习。如下图所示:n维向量变为m维。

四.表征与特征的关系

通过表征来映射特征。

### 深度学习中的外部特征表征方法 在深度学习中,外部特征表征是指将原始数据转换成能够有效捕捉其内在模式的形式。这通常涉及到设计合适的架构来提取有意义的信息,并将其转化为适合进一步分析或预测任务的表现形式。 #### 特征自动编码器(Autoencoder) 一种常见的用于表征外部特征的技术是自编码器(autoencoders),这是一种无监督的学习方式。它试图重构输入本身作为输出,在此过程中迫使隐藏层去学习有用的压缩表示[^3]。具体来说: - **结构**:自编码器由两部分组成——编码器(encoder)解码器(decoder)。前者负责将高维度的数据映射到低纬度的空间;后者则尝试从这个较低维度重新构建原始输入。 ```python import torch.nn as nn class AutoEncoder(nn.Module): def __init__(self, input_dim=784, hidden_dim=128): super().__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(hidden_dim, input_dim), nn.Sigmoid() # 如果图像像素范围为(0,1) ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded ``` #### 卷积神经网络(CNNs) 卷积神经网络特别擅长处理具有网格状拓扑结构的数据集,比如图片。通过一系列滤波操作,CNN可以从不同尺度上捕获局部依赖关系并组合它们形成全局描述子。例如PointNet++利用层次化的特征学习机制有效地处理了点云数据[^2]。 #### 循环神经网络(RNNs) 当面对序列化的时间序列或者其他有序排列的数据时,循环神经网络及其变体(如LSTM、GRU)提供了强大的工具来进行长期记忆建模以及上下文感知的任务执行。这类模型允许信息沿时间轴流动的同时保持状态更新,从而实现对外部动态变化的有效跟踪。 #### 流形学习辅助下的特征抽取 除了上述基于人工定义的操作外,还可以借助流形理论指导下的降维算法帮助揭示潜在变量之间的联系。像ISOMap这样的技术可以在保留样本间几何属性的前提下减少冗余维度,进而改善最终得到的特征质量[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值