为什么大部分浮点数字计算机中是不精确的

浮点数在计算机中的储存方式
浮点数是基本数据类型,有double和float,其由整数和小数部分组成。
在计算机中都以二进制的方式存储,32位float的浮点数的小数部分在计算机中的表示方式。

符号位指数位-8位23位尾数位
0一位为符号位,七位表示32位浮点数表示的最大数111...111

符号位

0表示正

1表示负

(2^7)-1 = 127 ,32位浮点数表示的最大值约等于2^127

现在我们需要存储十进制的0.1这个小数,首先需要把0.1转换成二进制数。然而,我们会发现,十进制的0.1转换成二进制是一个无限循环小数:0.0001100110011001100…,可是,对于用float32位来存储,其尾数只有23位,只能截取二进制小数的前23位存储。这时,误差就产生了。

我们来看14.7这个十进制数转换为二进制数是什么样的

整数部分 14 / 2 = 2 (1)  /   7 / 2 = 1 (1)    /  3 / 2 = 0 (1)   / 1 / 2 = 0  (0)      

小数部分 0.7*2=1.4 (1)  0.4*2=0.8(0)  0.8*2=1.6(1)  0.6*2=1.2(1)  0.2*2=0.4(0)......

小数部分就会陷入无限循环中结果就变成了100.101100110011......,对于32位的浮点数,只能截取二进制的前23位进行存储,这样以来大部分的浮点数以二进制的形式都不能进行精确的存储。

对于二进制转十进制,二进制是在32位float的变量下存储的,对于只截取了23位的二机制,转换过来的浮点数,肯定是不精确的。

我们举个例子:

//定义两个浮点型数据

float number = 4.1f;

flaot number = 7.7f;

//输出数据

System.out.print(number+number);

我们看到运行结果是一个9循环小数的值11.799999

这个两个浮点数是以float的形式存储在计算机当中,先转换为二进制进行存储计算,又转换为十进制进行输出,由于转换二进制时是小数位是无限的,转换回来时是个无限接近于0.01的数字。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值