浮点数在计算机中的储存方式
浮点数是基本数据类型,有double和float,其由整数和小数部分组成。
在计算机中都以二进制的方式存储,32位float的浮点数的小数部分在计算机中的表示方式。
符号位 | 指数位-8位 | 23位尾数位 |
0 | 一位为符号位,七位表示32位浮点数表示的最大数 | 111...111 |
符号位 0表示正 1表示负 | (2^7)-1 = 127 ,32位浮点数表示的最大值约等于2^127 |
现在我们需要存储十进制的0.1这个小数,首先需要把0.1转换成二进制数。然而,我们会发现,十进制的0.1转换成二进制是一个无限循环小数:0.0001100110011001100…,可是,对于用float32位来存储,其尾数只有23位,只能截取二进制小数的前23位存储。这时,误差就产生了。
我们来看14.7这个十进制数转换为二进制数是什么样的
整数部分 14 / 2 = 2 (1) / 7 / 2 = 1 (1) / 3 / 2 = 0 (1) / 1 / 2 = 0 (0)
小数部分 0.7*2=1.4 (1) 0.4*2=0.8(0) 0.8*2=1.6(1) 0.6*2=1.2(1) 0.2*2=0.4(0)......
小数部分就会陷入无限循环中结果就变成了100.101100110011......,对于32位的浮点数,只能截取二进制的前23位进行存储,这样以来大部分的浮点数以二进制的形式都不能进行精确的存储。
对于二进制转十进制,二进制是在32位float的变量下存储的,对于只截取了23位的二机制,转换过来的浮点数,肯定是不精确的。
我们举个例子:
//定义两个浮点型数据
float number = 4.1f;
flaot number = 7.7f;
//输出数据
System.out.print(number+number);
我们看到运行结果是一个9循环小数的值11.799999
这个两个浮点数是以float的形式存储在计算机当中,先转换为二进制进行存储计算,又转换为十进制进行输出,由于转换二进制时是小数位是无限的,转换回来时是个无限接近于0.01的数字。