机器学习
举一个栗子吖
这个作者很懒,什么都没留下…
展开
-
SVM支持向量机实现兵王问题
最近在看浙大胡浩基老师的机器学习研究生课程,关于SVM解决国际象棋兵王问题觉得很有意思,其实就是一个二分类问题。一、问题描述与分析国际象棋规则:8*8棋盘,黑、白兵各有8个。兵:第一次向前可以走一格或两格,以后只能向前走一格,不能后退;吃对方子的时候可以斜前方走,并落在对方位置。王:黑白各一个,王被将死即告负,走法是横着、斜着都可以,但是每次只能走一格。兵王问题:国际象棋的残局中,黑方只剩下一个王,白方剩一个兵和一个王。结局只有两种:白方将死黑方获胜,或者和棋。二、数据集UCI MAC原创 2020-08-06 22:30:24 · 4105 阅读 · 1 评论 -
第二章 支持向量机SVM
一、SVM(线性可分定义)线性可分(Linear Separable)线性不可分(Nonlinear Separable)特征空间维度>=四维 ---- 超平面(Hyperplane)假设 我们有N个训练样本和他们的标签在二分类情况下,如果一个数据集是线性可分的,即存在一个超平面将两个类别完全分开,那么一定存在无数多个超平面将这两个类别完全分开。向量偏导定义:二、SVM(问题描述)支持向量机寻找的最优分类直线应满足(基于二维):(1)该直线分开了两类(2)该直线原创 2020-08-01 06:15:55 · 502 阅读 · 1 评论 -
第一章 机器学习 引言
一、机器学习定义定义1:机器学习是这样的领域,它赋予计算机学习的能力(这种学习的能力)不是通过显著式编程获得的。Machine Learning is Fields of study that gives computers the ability to learn without being explicitly programmed.非显著式编程:让计算机自己总结规律的编程方法。定义2:一个计算机程序被称为可以学习,是指它能够针对某个任务T和某个性能指标P,从经验E中学习。这种学习的特点是,原创 2020-07-30 09:07:17 · 1668 阅读 · 0 评论 -
支持向量机SVM(线性模型)数学描述
支持向量机于1995年由Vapnik正式发表,在文本分类任务中显示出卓越的性能,很快成为机器学习的主流技术。支持向量机的求解通常是借助于凸优化技术,小样本问题,使其适用于大规模数据一直是研究重点。ML三步走限定一个模型(用方程/复杂的函数)在模型里留出一些待定的参数用训练样本和算法去确定待定参数取值(Support Vector Machine)1、线性模型线性可分(Linear Separable)非线性可分数学描述最大化间隔(margin)问题距离超平面最近的这几个训练样本原创 2020-07-28 11:24:27 · 643 阅读 · 0 评论