逻辑回归 - 理论篇

Logistic回归是一种分类方法,常用于二分类问题,适用于寻找危险因素、预测概率和判别。它与线性回归相似,但因变量遵循二项分布。Sigmoid函数是其核心,通过最大化似然估计确定最佳参数。正则化用于防止过拟合,L1和L2正则化是常见策略。多类分类可通过多个二分类模型实现。
摘要由CSDN通过智能技术生成
                                                                       
               

什么是逻辑回归?

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。

这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

  • 如果是连续的,就是多重线性回归;
  • 如果是二项分布,就是Logistic回归;
  • 如果是Poisson分布,就是Poisson回归;
  • 如果是负二项分布,就是负二项回归。

Logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的Logistic回归。

Logistic回归的主要用途:

  • 寻找危险因素:寻找某一疾病的危险因素等;
  • 预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
  • 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。

Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。

常规步骤

Regression问题的常规步骤为:

  1. 寻找h函数(即hypothesis);
  2. 构造J函数(损失函数);
  3. 想办法使得J函数最小并求得回归参数(θ)

构造预测函数h

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

Sigmoid 函数在有个很漂亮的“S”形,如下图所示(引自维基百科)&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值