python机器学习案例系列教程——LightGBM算法

                                                                                   
             

安装

pip install lightgbm
   
   
   
  • 1
  • 1

gitup网址:https://github.com/Microsoft/LightGBM

中文教程

http://lightgbm.apachecn.org/cn/latest/index.html

lightGBM简介

xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF、GBM、SVM、LASSO……..。现在微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位。

顾名思义,lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机。

LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势:

  • 更快的训练效率

  • 低内存使用

  • 更高的准确率

  • 支持并行化学习

  • 可处理大规模数据

    如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。

xgboost缺点

其缺点,或者说不足之处:

每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。

预排序方法(pre-sorted):首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引,为了后续快速的计算分割点),这里需要消耗训练数据两倍的内存。其次时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。

对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。

lightGBM特点

以上与其说是xgboost的不足,倒不如说是lightGBM作者们构建新算法时着重瞄准的点。解决了什么问题,那么原来模型没解决就成了原模型的缺点。

概括来说,lightGBM主要有以下特点:

  • 基于Histogram的决策树算法

  • 带深度限制的Leaf-wise的叶子生长策略

  • 直方图做差加速

  • 直接支持类别特征(Categorical Feature)

  • Cache命中率优化

  • 基于直方图的稀疏特征优化

  • 多线程优化

前2个特点使我们尤为关注的。

Histogram算法

直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。

带深度限制的Leaf-wise的叶子生长策略

Level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。

Leaf-wise则是一种更为高效的策略:每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。

Leaf-wise的缺点:可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值