数学建模
文章平均质量分 81
数学建模
xiongyuqing
看见我请叫我学英语
展开
-
Matlab基本语法
用户界面设置搜索路径扩展搜索路径帮助系统Matlab基本命令数据类型变量常量数值运算符点运算与除法关系与逻辑运算符函数运算向量向量生成向量元素的引用向量运算四则运算点积和叉积多项式创建多项式多项式四则与导数运算特殊变量单元变量结构型变量矩阵运算矩阵定义生成矩阵矩阵操作矩阵元素抽取矩阵运算矩阵范数矩阵分解Cholesky分解等等分解函数程序设计M文件函数文件程序结构流程控制原创 2021-01-24 21:28:57 · 302 阅读 · 3 评论 -
时间序列预测
在深度学习中,有很多模型可以做,比如RNN,LSTM等等有时间序列特征的模型。但是它们所需的训练数据比较大,比如之前在Matorcup大数据比赛的A题我使用了LSTM预测,训练数据有9个G。对于比较小的样本集,使用传统方法进行预测效果较好。关注点:趋势、季节变化、序列相关性(自相关性):随机噪声时间序列分析的核心就是挖掘该时间序列中的自相关性平稳性:经由样本时间序列得到的拟合曲线,未来一段时间内仍能顺着现有形态的“惯性”延续下去平稳性要求序列的均值和方差不发生明显变化(1)一个随机时间序列可以通过原创 2021-01-27 21:26:58 · 8199 阅读 · 0 评论 -
TOPSIS算法与熵权法
TOPSIS算法英文全称Technique for Order Preference by Similarity to Ideal Solution,翻译为逼近理想解排序法。熵权法层次分析法的权重大多是由自己确定的,主观性太强。熵权法是一种客观赋权方法,当数据变异程度越小,可以理解为方差越小,数据所含的信息越小,权重也就越低。常常使用差学生考生清华和好学生考上清华做为例子对比。但是熵权法也有自己的弊端,对于一些极端情况,有些指标的变异程度虽然非常小,但是可能其权重很大,例如在评选奖学金的时候记档案次原创 2021-02-04 18:42:15 · 13849 阅读 · 1 评论 -
神经网络预测模型基本原理与编程实现
== 学习内容来自科研交流公众号 ==原理数据归一化把数据经过处理后使之限定在一定的范围内。比如通常限制在区间[0, 1]或者[-1, 1]为什么要归一化?奇异样本数据:指相对于其他输入样本特别大或特别小的样本矢量奇异样本数据的存在会引起训练时间增大,并可能无法收敛。所以在存在奇异样本数据的情况下,进行训练之前最好进行归一化,如果不存在奇异样本数据,则可以不用归一化。归一化常用方法网络设计输入输出层设计模型输入层节点数为输入特征数,输出层节点数为想要得到结果的个数。隐层设计原创 2021-01-27 14:10:48 · 27281 阅读 · 7 评论 -
智能优化模型与算法实现
优化算法遗传算法选择操作:从旧个体中以一定概率选择优良个体组成新的种群,以繁殖得到下一代。轮盘赌法:即基于适应度比例的选择策略,个体i被选中的概率为交叉操作:从种群中随机选择两个个体,通过两个染色体的交换组合,把父串的优秀特征遗传给子串,从而产生新的优秀个体。采用实数交叉,第k个染色体ak和第l个染色体al在j位的交叉操作方法为,b为[0, 1]随机数:变异操作:从种群中随机选择一个个体,选择个体中的一点进行变异以产生更优秀的个体。第i个个体的第j个基因aij进行变异操作的方法为,r为[原创 2021-02-02 19:44:14 · 1278 阅读 · 2 评论