论文阅读
文章平均质量分 94
论文阅读记录
xiongyuqing
看见我请叫我学英语
展开
-
论文阅读 有关SemGCN的公式理解
图1对提出的语义图卷积的说明。(a)3×33\times 33×3 的CNNs卷积核(用绿色高亮) 为核中的每个点学习了一个不同的转换矩阵 wiw_iwi。我们通过学习每个位置的加权向量 aia_iai 和共享的变换矩阵WWW来对其进行近似。(b)传统的GCNs只学习所有节点的共享转换矩阵w0w_0w0。(c)近似公式(a) 可以直接推广到(b):我们为图中的每个节点增加一个额外的可学习权值。(d)我们进一步扩展(c),以了解每个节点的通道加权向量aia_iai。将它们与传统GCNs中的香草变换..原创 2021-04-02 12:33:25 · 1299 阅读 · 1 评论 -
论文阅读 Semantic Graph Convolutional Networks for 3D Human Pose Regression
Semantic Graph Convolutional Networks for 3D Human Pose Regression使用语义图卷积网络对三维人体姿态进行回归Abstract在这篇论文中,我们研究了学习Graph Convolutional Networks (GCNs)进行回归的问题。目前GCNs的结构局限于卷积滤波器的小接收域和每个节点的共享变换矩阵。为了解决这些限制,我们提出了语义图卷积网络(SemGCN),这是一种新的神经网络体系结构,使用图结构数据操作回归任务。SemGCN学习原创 2021-03-25 21:55:09 · 1386 阅读 · 0 评论 -
论文阅读 A simple yet effective baseline for 3d human pose estimation
A simple yet effective baseline for 3d human pose estimation一个简单有效的3d人体姿态估计基准Abstract继深层卷积网络的成功之后,用于3D人体姿势估计的最新方法已集中于在给定原始图像像素的情况下预测3D联合位置的深层端到端系统。尽管它们具有出色的性能,但通常很难理解其剩余错误是由于有限的2D姿势(视觉)理解还是由于未能将2D姿势映射到3维位置而引起的。为了理解这些错误源,我们着手建立一个给定2d关节位置可预测3d位置的系统。令我们惊原创 2020-08-31 16:40:42 · 5364 阅读 · 13 评论