动态规划学习(小白)

###

看了知乎关于动态规划的一篇回答有感

链接如下:

什么是动态规划(Dynamic Programming)?动态规划的意义是什么? - 知乎

https://www.zhihu.com/question/23995189

###

实现一下钞票面额分别是1、5、11,凑出输入金额所需的最小钞票数.

#include <bits/stdc++.h>
using namespace std;
int dp[10000];
int main()
{
    int n;
    cin>>n;
    int money[] = {1,5,11};//规定钞票面额
    dp[0] = 0 ;
    for(int i =1;i<=n;i++)
    {
        int cost = 100000;//取一个极大的cost
        if(i-money[2]>=0) cost = min(cost,dp[i-money[2]]+1);//如果当前所需金额超过钞票面额,则转化为i-money[i]的最优解
        if(i-money[1]>=0) cost = min(cost,dp[i-money[1]]+1);
        if(i-money[0]>=0) cost = min(cost,dp[i-money[0]]+1);
        dp[i] = cost;
    }
    cout<<dp[n];
}

###

思考一下,若钞票面额的数量m不确定呢? 假设这里 m =3;

#include <bits/stdc++.h>
using namespace std;
int dp[10000];
int main()
{
    int n,m;
    m=3;//取m=3
    cin>>n;
    int money[] = {0,1,5,11};
    dp[0] = 0 ;
    for(int i =1;i<=n;i++)
    {
        int cost = 1000000;
        for(int j =m;j>=1;j--)//遍历每一种面额
        {
            if(i - money[j]>=0)
            cost = min(cost,dp[i-money[j]]+1); 
            
        }
        dp[i] = cost;//将每一次m中面额的最小值给dp[i]赋值.
    }
    
    cout<<dp[n];
}

###

如果我不想用cost呢?

将dp数组改为vector容器dp,一定要赋初值.

#include <bits/stdc++.h>
using namespace std;
int main()
{
    
    int n,m;
    m=3;
    cin>>n;
    int money[] = {0,1,5,11};
    vector<int> dp(n+1,n+1);//一定要赋大的初值,否则取不到最小值.
    dp[0] = 0 ;
    for(int i =1;i<=n;i++)
    {
        
        for(int j =1;j<=m;j++)
        {
            if(i - money[j]>=0)
            dp[i] = min(dp[i],dp[i-money[j]]+1); 
            
        }
    }
    
    cout<<dp[n];
}

###

简单斐波那契数列(递归实现)

#include <bits/stdc++.h>
using namespace std;
int fibonacci(int n)
{
    if(n==1) return 1;
    if(n==2) return 1;
    return fibonacci(n-1) + fibonacci(n-2);
}
int main()
{
    int n;
    cin>>n;
    cout<<fibonacci(n);
    
}

因为每一个f(n)可能被重复计算多次,时间复杂度很高,故考虑一种方式记忆,造一个「备忘录」.(可以用哈希表或者map)

#include <bits/stdc++.h>
using namespace std;
unordered_map<int,int> cnt;
int fibonacci(int n)
{
    if(n==1) return 1;
    if(n==2) return 1;
    if(cnt[n] !=0)
    {
        return cnt[n];
    }
    else
    {
        cnt[n] = fibonacci(n-1) + fibonacci(n-2);
        return fibonacci(n-1) + fibonacci(n-2);
    }
}
int main()
{
    int n;
    cin>>n;
    cout<<fibonacci(n);
    
}

###

当然,也可以用数组存储每一个值,通过递推的方式自底向上算出每一个f[i]

#include <bits/stdc++.h>
using namespace std;
int fibonacci[10000];
int main()
{
    int n;
    cin>>n;
    fibonacci[1] = 1;
    fibonacci[2] = 1;
    for(int i =3;i<=n;i++)
    {
        fibonacci[i] = fibonacci[i-1] + fibonacci[i-2];
    }
    cout<<fibonacci[n];
    
    
}

这其实便是dp的雏形.

###

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值