分治算法分析
1、思想
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并
2、什么样的问题适合分治法
- 问题的规模缩小到一定的规模就可以较容易地解决。
- 问题可以分解为若干个规模较小的模式相同的子问题,即该问题具有最优子结构性质。
- 合并问题分解出的子问题的解可以得到问题的解。
- 问题所分解出的各个子问题之间是独立的,即子问题之间不存在公共的子问题。
- 具有分解终止条件,有当问题足够小时可以直接求解。
3、分治思想的经典运用(归并排序)
3.1归并排序代码
/**
* 归并排序
* @author tyeerth
* @date 2020/8/19 - 9:56
*/
public class MergeSort {
public static void mergeSort(int[] arr){
if (arr.length < 2 || arr == null){
return ;
}
mergeSort(arr,0,arr.length-1);
}
public static void mergeSort(int[] arr , int l,int r){
//如果l和r相等,说明中间只有一个数,数组已经排好序了。
if (l == r) {
return;
}
int mid = l + ((r - l) >> 1);//求中点
mergeSort(arr, l, mid);
// System.out.println(l);
mergeSort(arr, mid + 1, r);
merge(arr, l, mid, r);
}
public static void merge(int[] arr, int l, int m, int r) {
int[] help = new int[r - l + 1];
int i = 0;
int p1 = l;
int p2 = m + 1;
while (p1 <= m && p2 <= r) {
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while (p1 <= m) {
help[i++] = arr[p1++];
}
while (p2 <= r) {
help[i++] = arr[p2++];
}
for (i = 0; i < help.length; i++) {
arr[l + i] = help[i];
}
}
}