分治思想分析与举例

分治算法分析

1、思想

字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并

2、什么样的问题适合分治法

  1. 问题的规模缩小到一定的规模就可以较容易地解决。
  2. 问题可以分解为若干个规模较小的模式相同的子问题,即该问题具有最优子结构性质。
  3. 合并问题分解出的子问题的解可以得到问题的解。
  4. 问题所分解出的各个子问题之间是独立的,即子问题之间不存在公共的子问题。
  5. 具有分解终止条件,有当问题足够小时可以直接求解。

3、分治思想的经典运用(归并排序)

3.1归并排序代码

/**
 * 归并排序
 * @author tyeerth
 * @date 2020/8/19 - 9:56
 */
public class MergeSort {
    public static void  mergeSort(int[] arr){
        if (arr.length < 2 || arr == null){
            return ;
        }
        mergeSort(arr,0,arr.length-1);
    }
    public static void mergeSort(int[] arr , int l,int r){
        //如果l和r相等,说明中间只有一个数,数组已经排好序了。
        if (l == r) {
            return;
        }
        int mid = l + ((r - l) >> 1);//求中点
        mergeSort(arr, l, mid);
//		System.out.println(l);

        mergeSort(arr, mid + 1, r);
        merge(arr, l, mid, r);
    }
    public static void merge(int[] arr, int l, int m, int r) {
        int[] help = new int[r - l + 1];
        int i = 0;
        int p1 = l;
        int p2 = m + 1;
        while (p1 <= m && p2 <= r) {
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= m) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
    }

}

3.2图解

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值