阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示:
在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)作为BlockingQueue的使用者,我们再也不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue都给你一手包办了。
当阻塞队列是空时,从队列中获取元素的操作会被阻塞,直到队列不为空。
当阻塞队列是满时,往队列里添加元素的操作将会被阻塞,直到队列有有空位。
核心方法:
添加:
void put(Object e):将元素加入队列尾部,如果队列已满,阻塞当前指行此方法的线程
boolean offer(Object e):将元素加入队列尾部,如果队列已满,立即返回false,不堵塞线程
offer(E o, long timeout, TimeUnit unit):可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,此时再返回false。
删除并取:
Object poll():队列为空,立即返回null(不堵塞)
取:
Object take():获得队列头部元素(堵塞)
drainTo():一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。
(1)ArrayBlockingQueue
基于数组的阻塞队列实现,在ArrayBlockingQueue内部,维护了一个定长数组,以便缓存队列中的数据对象,这是一个常用的阻塞队列,除了一个定长数组外,ArrayBlockingQueue内部还保存着两个整形变量,分别标识着队列的头部和尾部在数组中的位置。ArrayBlockingQueue在生产者放入数据和消费者获取数据,都是共用同一个锁对象,由此也意味着两者无法真正并发运行,这点尤其不同于LinkedBlockingQueue;
(2)LinkedBlockingQueue
基于链表的阻塞队列,同ArrayListBlockingQueue类似,其内部也维持着一个数据缓冲队列(该队列由一个链表构成),LinkedBlockingQueue之所以能够高效的处理并发数据,还因为其对于生产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费者可以并发地操作队列中的数据,以此来提高整个队列的并发性能。
作为开发者,我们需要注意的是,如果构造一个LinkedBlockingQueue对象,而没有指定其容量大小,LinkedBlockingQueue会默认一个类似无限大小的容量(Integer.MAX_VALUE),这样的话,如果生产者的速度一旦大于消费者的速度,也许还没有等到队列满阻塞产生,系统内存就有可能已被消耗殆尽了。
下面的代码演示了如何使用BlockingQueue:
(1) 测试类
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
public class BlockingQueueTest {
public static void main(String[] args) throws InterruptedException {
// 声明一个容量为10的缓存队列
BlockingQueue<String> queue = new LinkedBlockingQueue<String>(10);
//new了三个生产者和一个消费者
Producer producer1 = new Producer(queue);
Producer producer2 = new Producer(queue);
Producer producer3 = new Producer(queue);
Consumer consumer = new Consumer(queue);
// 借助Executors
ExecutorService service = Executors.newCachedThreadPool();
// 线程池会分配四个空闲的线程来执行交给它的target的run方法
service.execute(producer1);
service.execute(producer2);
service.execute(producer3);
service.execute(consumer);
// 执行1s
Thread.sleep(1 * 1000);
//退出生产者
producer1.stop();
producer2.stop();
producer3.stop();
Thread.sleep(2000);
// 退出Executor
service.shutdown();
}
}
(2)生产者类
import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/**
* 生产者线程
*
* @author jackyuj
*/
public class Producer implements Runnable {
private volatile boolean isRunning = true;//是否在运行标志
private BlockingQueue queue;//阻塞队列
private static AtomicInteger count = new AtomicInteger();//自动更新的值
private static final int DEFAULT_RANGE_FOR_SLEEP = 1000;
//构造函数
public Producer(BlockingQueue queue) {
this.queue = queue;
}
public void run() {
String data = null;
Random r = new Random();
System.out.println("启动生产者线程!");
try {
while (isRunning) {
System.out.println("正在生产数据...");
Thread.sleep(r.nextInt(DEFAULT_RANGE_FOR_SLEEP));//取0~DEFAULT_RANGE_FOR_SLEEP值的一个随机数
data = "data:" + count.incrementAndGet();//以原子方式将count当前值加1
System.out.println("将数据:" + data + "放入队列...");
if (!queue.offer(data, 2, TimeUnit.SECONDS)) {//设定的等待时间为2s,如果超过2s还没加进去返回false
System.out.println("放入数据失败:" + data);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
} finally {
System.out.println("退出生产者线程!");
}
}
public void stop() {
isRunning = false;
}
}
(3)消费者类
import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
/**
* 消费者线程
*
* @author jackyuj
*/
public class Consumer implements Runnable {
private BlockingQueue<String> queue;
private static final int DEFAULT_RANGE_FOR_SLEEP = 1000;
//构造函数
public Consumer(BlockingQueue<String> queue) {
this.queue = queue;
}
public void run() {
System.out.println("启动消费者线程!");
Random r = new Random();
boolean isRunning = true;
try {
while (isRunning) {
System.out.println("正从队列获取数据...");
String data = queue.poll(2, TimeUnit.SECONDS);//有数据时直接从队列的队首取走,无数据时阻塞,在2s内有数据,取走,超过2s还没数据,返回失败
if (null != data) {
System.out.println("拿到数据:" + data);
System.out.println("正在消费数据:" + data);
Thread.sleep(r.nextInt(DEFAULT_RANGE_FOR_SLEEP));
} else {
// 超过2s还没数据,认为所有生产线程都已经退出,自动退出消费线程。
isRunning = false;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
} finally {
System.out.println("退出消费者线程!");
}
}
}
(3)DelayQueue延迟获取
DelayQueue中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue是一个没有大小限制的队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作**(消费者)才会被阻塞**。
使用场景:
DelayQueue使用场景较少,但都相当巧妙,常见的例子比如使用一个DelayQueue来管理一个超时未响应的连接队列。
(4)PriorityBlockingQueue
基于优先级的阻塞队列(优先级的判断通过构造函数传入的Compator比较对象来决定),但需要注意的是PriorityBlockingQueue并不会阻塞数据生产者,而只会在没有可消费的数据时,阻塞数据的消费者。因此使用的时候要特别注意,生产者生产数据的速度绝对不能快于消费者消费数据的速度,否则时间一长,会最终耗尽所有的可用堆内存空间。在实现PriorityBlockingQueue时,内部控制线程同步的锁采用的是公平锁。
小结
BlockingQueue不光实现了一个完整队列所具有的基本功能,同时在多线程环境下,他还自动管理了多线间的自动等待与唤醒功能,从而使得程序员可以忽略这些细节,关注更高级的功能。