差分矩阵
差分数组可以将二维数组的核心操作由O(n*n),变为O(1) 。
假设原数组 a[N][N] 是 b[N][N]数组的前缀和,那么b[ ][ ]数组为a[ ][ ]数组的差分数组。
构造差分数组
- 与一维差分类似,构造差分数组的目的是为了让原数组a中的子矩阵加上一个数c时所需要的时间复杂度从O(n * n) 优化到O(1)。
- 由于b数组为a数组的差分数组,所以将b[ i ][ j ] 加上一个数c,则原数组a[ i ][ j ]以及之后的数也都会同时加上c。
- 假定差分数组已被构建成功,为了使被选中的子矩阵都加上一个数c,则可以:
b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;
- 初始化差分数组也可以通过将(x1, y1) - (x1 - y1) 子矩阵加上a[ i ][ j ]来实现
b[x1][y1] + = a[ i ][ j ];
b[x1,][y2+1] - = a[ i ][ j ];
b[x2+1][y1] - = a[ i ][ j ];
b[x2+1][y2+1] + = a[ i ][ j ];
#include<iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
// 核心代码:将区间[x1, y1] - [x2, y2]中的所有值加上c
void insert(int x1, int y1, int x2