算法基础 - 差分矩阵

差分矩阵

差分数组可以将二维数组的核心操作由O(n*n),变为O(1) 。
假设原数组 a[N][N] 是 b[N][N]数组的前缀和,那么b[ ][ ]数组为a[ ][ ]数组的差分数组。
构造差分数组

  1. 与一维差分类似,构造差分数组的目的是为了让原数组a中的子矩阵加上一个数c时所需要的时间复杂度从O(n * n) 优化到O(1)。
  2. 由于b数组为a数组的差分数组,所以将b[ i ][ j ] 加上一个数c,则原数组a[ i ][ j ]以及之后的数也都会同时加上c。
  3. 假定差分数组已被构建成功,为了使被选中的子矩阵都加上一个数c,则可以:

b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;

  1. 初始化差分数组也可以通过将(x1, y1) - (x1 - y1) 子矩阵加上a[ i ][ j ]来实现

b[x1][y1] + = a[ i ][ j ];
b[x1,][y2+1] - = a[ i ][ j ];
b[x2+1][y1] - = a[ i ][ j ];
b[x2+1][y2+1] + = a[ i ][ j ];

#include<iostream>
using namespace std;

const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
// 核心代码:将区间[x1, y1] - [x2, y2]中的所有值加上c
void insert(int x1, int y1, int x2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值