基于劈窗算法的地表温度反演算法

该博客详细介绍了如何处理Landsat8遥感数据,包括辐射标定计算BAND10和BAND11的亮温温度,使用特定算法估算大气水汽含量,计算地表比辐射率,并通过NDVI和FVC来分析植被覆盖情况,最后利用这些信息推算地表温度。涉及的关键步骤包括辐射校正、亮度温度转换、水汽含量估算和地表温度的多种方法比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.计算BAND10、BAND11亮温温度

(1)辐射标定

辐射标定公式
其中,Qcal为影像原始值

Landsat8参数列表:

    RADIANCE_MULT_BAND_1 = 1.2970E-02
    RADIANCE_MULT_BAND_2 = 1.3281E-02
    RADIANCE_MULT_BAND_3 = 1.2238E-02
    RADIANCE_MULT_BAND_4 = 1.0320E-02
    RADIANCE_MULT_BAND_5 = 6.3154E-03
    RADIANCE_MULT_BAND_6 = 1.5706E-03
    RADIANCE_MULT_BAND_7 = 5.2937E-04
    RADIANCE_MULT_BAND_8 = 1.1680E-02
    RADIANCE_MULT_BAND_9 = 2.4682E-03
    RADIANCE_MULT_BAND_10 = 3.3420E-04
    RADIANCE_MULT_BAND_11 = 3.3420E-04
    RADIANCE_ADD_BAND_1 = -64.84866
    RADIANCE_ADD_BAND_2 = -66.40582
    RADIANCE_ADD_BAND_3 = -61.19239
    RADIANCE_ADD_BAND_4 = -51.60087
    RADIANCE_ADD_BAND_5 = -31.57716
    RADIANCE_ADD_BAND_6 = -7.85295
    RADIANCE_ADD_BAND_7 = -2.64687
    RADIANCE_ADD_BAND_8 = -58.39799
    RADIANCE_ADD_BAND_9 = -12.34107
    RADIANCE_ADD_BAND_10 = 0.10000
    RADIANCE_ADD_BAND_11 = 0.10000

(2)亮温温度

公式:
在这里插入图片描述

2.计算大气水汽含量CWV

这部分没看懂,根据算法进行步骤总结
N应该是窗口大小,不知道有啥影响,好像是N越小越精确?
参考文献: A practical split-window algorithm for estimating land surface temperature from Landsat 8 data

在这里插入图片描述

3.计算地表比辐射率

(1)植被指数NDVI

NDVI=(NIR-RED)/(NIR+RED)
p.s. NIR:BAND4   RED:BAND5

(2)植被覆盖度FVC

FVC=(NDVI - NDVI_min) / (NDVI_max - NDVI_min)^2
p.s. NDVI_min=0.2    NDVI_max=0.5

(3)地表比辐射率LSE

在这里插入图片描述
发射率参数列表

4.计算地表温度

参考文献:Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method
在这里插入图片描述
公式:
在这里插入图片描述
参数列表:
参数列表

### 如何计算地表比辐射率 #### 使用植被覆盖度 (FVC) 计算地表比辐射率 一种较为精确的方法是利用植被覆盖度(Fraction of Vegetation Cover, FVC)来估计地表比辐射率。此方法基于遥感影像中的植被信息,能够更准确地反映实际的地表状况。 通常情况下,FVC 的计算依赖于归一化差异植被指数(Normalized Difference Vegetation Index, NDVI)。NDVI 是通过近红外波段 \(NIR\) 和红光波段 \(Red\) 来定义的: \[ NDVI = \frac{NIR - Red}{NIR + Red} \] 随后,可以通过以下公式将 NDVI 转换为 FVC[^1]: \[ FVC = \left(\frac{NDVI - NDVI_{min}}{NDVI_{max} - NDVI_{min}}\right)^2 \] 其中, - \(NDVI_{min}\) 表示无植被区域的最小 NDVI 值; - \(NDVI_{max}\) 则代表完全被植被覆盖区的最大 NDVI 值。 一旦获得了 FVC 数据,则可进一步用于估算地表比辐射率。具体而言,在已知背景土壤和纯植被部分各自对应的发射率的情况下,整个像元内的平均发射率可通过线性混合模型求得: \[ ε_s = ε_v * FVC + ε_b *(1-FVC) \] 这里, - \(ε_s\) 为综合考虑后的地表比辐射率; - \(ε_v\) 指的是植被本身的发射率; - \(ε_b\) 对应着裸土或非植被成分的发射率。 这种做法不仅提高了精度而且简化了操作流程,尤其适用于大面积监测场景下快速评估地表属性的需求。 ```python def calculate_fvc(ndvi, ndvi_min=0.2, ndvi_max=0.9): """ Calculate Fraction of Vegetation Cover based on NDVI. Parameters: ndvi : float or array-like Normalized difference vegetation index value(s). ndvi_min : float, optional Minimum possible NDVI for non-vegetated areas. ndvi_max : float, optional Maximum possible NDVI for fully vegetated areas. Returns: fvc : float or numpy.ndarray Calculated fraction of vegetation cover. """ import numpy as np # Ensure input is a NumPy array to handle both single values and arrays uniformly ndvi_array = np.asarray(ndvi) # Apply the formula to compute FVC from NDVI numerator = ndvi_array - ndvi_min denominator = ndvi_max - ndvi_min ratio = numerator / denominator squared_ratio = ratio ** 2 return squared_ratio def estimate_surface_emissivity(fvc, emissivity_vegetation=0.98, emissivity_background=0.95): """ Estimate surface emissivity using linear mixture model with given FVC. Parameters: fvc : float or array-like Fraction of vegetation cover calculated previously. emissivity_vegetation : float, default 0.98 Emissivity associated purely with vegetation components. emissivity_background : float, default 0.95 Background soil/non-vegetative component's emissivity. Returns: epsilon_s : float or numpy.ndarray Estimated overall surface emissivity considering mixed land covers. """ import numpy as np # Convert inputs into consistent format fvc_array = np.asarray(fvc) # Perform weighted average calculation according to provided equation epsilon_s = ( emissivity_vegetation * fvc_array + emissivity_background * (1 - fvc_array) ) return epsilon_s ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值