插值:求过已知有限个数据点的近似函数
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小
插值和拟合都是要根据一组数据构造出一个函数作为近似,由于近似的要求不同,二者的数学方法完全不同的。面对一个实际问题,选用插值还是拟合,视情况而定。
插值方法
- 拉格朗日多项式插值
- 牛顿插值
- 等距节点插值公式
- 分段线性插值
- 埃尔米特插值
- 样条插值
概念:
“样条”本来式一种绘图工具,它是富有弹性的细木条或金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。
“样条函数”具有一定光滑的分段多项式
在给定区间[a,b]的一个划分
如果函数满足: - 在每个小区间[xi,xi-1] (i=1,1,…,n-1)上函数使k次多项式
- 函数在[a,b]上具有k-1阶连续导数,则称函数为关于划分区间的k次样条函数,其图形称为k次样条曲线。x0,x1,…,xn称为样条节点,x1,… ,
xn-1称为内节点。x0,xn称为边界点,这类样条函数的全体记作