插值与拟合

插值与拟合是根据数据构造近似函数的两种方法。插值要求函数必须通过所有给定的数据点,如拉格朗日多项式插值、牛顿插值和样条插值等。拟合则寻找使得总偏差最小的近似函数,如线性最小二乘法。样条函数是一类在多个子区间上具有连续导数的分段多项式函数,常用于插值和拟合任务。
摘要由CSDN通过智能技术生成

插值:求过已知有限个数据点的近似函数
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小

插值和拟合都是要根据一组数据构造出一个函数作为近似,由于近似的要求不同,二者的数学方法完全不同的。面对一个实际问题,选用插值还是拟合,视情况而定。

插值方法

  • 拉格朗日多项式插值
  • 牛顿插值
  • 等距节点插值公式
  • 分段线性插值
  • 埃尔米特插值
  • 样条插值
    概念:
    样条”本来式一种绘图工具,它是富有弹性的细木条或金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。
    样条函数”具有一定光滑的分段多项式
    在给定区间[a,b]的一个划分
    在这里插入图片描述
    如果函数满足:
  • 在每个小区间[xi,xi-1] (i=1,1,…,n-1)上函数使k次多项式
  • 函数在[a,b]上具有k-1阶连续导数,则称函数为关于划分区间的k次样条函数,其图形称为k次样条曲线。x0,x1,…,xn称为样条节点,x1,… ,
    xn-1称为内节点。x0,xn称为边界点,这类样条函数的全体记作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值