模糊综合评判法
- 一级模糊综合评判
- 多层次模糊综合评判
一级模糊综合评判模型的建立
(1)确定因素集
将因素集 U按属性的类型划分为 k个子集,或者说影响 的k 个指标,记为U = U(U1,U2,… ,Uk)
且满足
(2)确定评语集
由各种不同决断构成的集合被评为评语集
权重 的确定方法很多,在实际运用中常用的方法有:Delphi法、专家调查法和层次分析法。
通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵 R。
单级综合评判 B = A 。R
多层次综合评判模型
一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。所以,需采用分层的办法来解决问题。
例:
解答:
因素集U分为3层:
假设某区域有8个候选地址,决断集V={A,B,C,D,E,F,G,H}代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判
(1)分层做评判
u51={u511,u512, u513}, 权重A51={1/3 ,1/3 ,1/3}
由表对U511,u512, u513的模糊评判构成的单因素评判矩阵:
类似:
(2)高层次的综合评判
由此可知,8块候选地的综合评判结果的排序为:D,A,C, ,G,H,F,E,选出较高估计值的地点作为物流中心。
应用模糊综合评判方法进行物流中心选址,模糊评判模型采用层次式结构,把评判因素分为三层,也可进一步分为多层。这里介绍的计算模型由于对权重集进行归一化处理,采用加权求和型,将评价结果按照大小顺序排列,决策者从中选出估计值较高的地点作为物流中心即可,方法简便。